The eigenComputes function computes eigenvalues from the identified data type. It is used internally in many fonctions of the nFactors package in order to apply these to a vector of eigenvalues, a matrix of correlations or covariance or a data frame.
eigenComputes(x, cor =TRUE, model ="components",...)
Arguments
x: numeric: a vector of eigenvalues, a matrix of correlations or of covariances or a data.frame of data
cor: logical: if TRUE computes eigenvalues from a correlation matrix, else from a covariance matrix
model: character: "components" or "factors"
...: variable: additionnal parameters to give to the cor or cov functions
Returns
numeric: return a vector of eigenvalues
Examples
# .......................................................# Different data types# Vector of eigenvaluesdata(dFactors)x1 <- dFactors$Cliff1$eigenvalues
eigenComputes(x1)# Data from a data.framex2 <- data.frame(matrix(20*rnorm(100), ncol=5))eigenComputes(x2, cor=TRUE, use="everything")eigenComputes(x2, cor=FALSE, use="everything")eigenComputes(x2, cor=TRUE, use="everything", method="spearman")eigenComputes(x2, cor=TRUE, use="everything", method="kendall")x3 <- cov(x2)eigenComputes(x3, cor=TRUE, use="everything")eigenComputes(x3, cor=FALSE, use="everything")x4 <- cor(x2)eigenComputes(x4, use="everything")# .......................................................
Author(s)
Gilles Raiche
Centre sur les Applications des Modeles de Reponses aux Items (CAMRI)