nScreeObjectMethods function

Utility Functions for nScree Class Objects

Utility Functions for nScree Class Objects

Utility functions for nScree class objects. Some of these functions are already implemented in the nFactors package, but are easier to use with generic functions like these.

## S3 method for class 'nScree' summary(object, ...) ## S3 method for class 'nScree' print(x, ...) ## S3 method for class 'nScree' plot(x, ...) is.nScree(object)

Arguments

  • object: nScree: an object of the class nScree

  • ...: variable: additionnal parameters to give to the print

    function with print.nScree, the plotnScree with plot.nScree or to the summary function with summary.nScree

  • x: Results of a previous nScree analysis

Returns

Generic functions for the nScree class: - is.nScree: logical: is the object of the class nScree?

  • plot.nScree: graphic: plots a figure according to the plotnScree function

  • print.nScree: numeric: vector of the number of components/factors to retain: same as the Components vector from the nScree object

  • summary.nScree: data.frame: details of the results from a nScree analysis: same as the Analysis

    data.frame from the nScree object, but with easier control of the number of decimals with the digits parameter

Examples

## INITIALISATION data(dFactors) # Load the nFactors dataset attach(dFactors) vect <- Raiche # Use the example from Raiche eigenvalues <- vect$eigenvalues # Extract the observed eigenvalues nsubjects <- vect$nsubjects # Extract the number of subjects variables <- length(eigenvalues) # Compute the number of variables rep <- 100 # Number of replications for the parallel analysis cent <- 0.95 # Centile value of the parallel analysis ## PARALLEL ANALYSIS (qevpea for the centile criterion, mevpea for the mean criterion) aparallel <- parallel(var = variables, subject = nsubjects, rep = rep, cent = cent )$eigen$qevpea # The 95 centile ## NOMBER OF FACTORS RETAINED ACCORDING TO DIFFERENT RULES results <- nScree(x=eigenvalues, aparallel=aparallel) is.nScree(results) results summary(results) ## PLOT ACCORDING TO THE nScree CLASS plot(results)

References

Raiche, G., Walls, T. A., Magis, D., Riopel, M. and Blais, J.-G. (2013). Non-graphical solutions for Cattell's scree test. Methodology, 9(1), 23-29.

Author(s)

Gilles Raiche

Centre sur les Applications des Modeles de Reponses aux Items (CAMRI)

Universite du Quebec a Montreal

raiche.gilles@uqam.ca

  • Maintainer: Gilles Raiche
  • License: GPL (>= 3.5.0)
  • Last published: 2022-10-10

Useful links