Population or Simulated Sample Correlation Matrix from a Given Factor Structure Matrix
Population or Simulated Sample Correlation Matrix from a Given Factor Structure Matrix
The structureSim function returns a population and a sample correlation matrices from a predefined congeneric factor structure.
structureSim(fload, reppar =30, repsim =100, N, quantile =0.95, model ="components", adequacy =FALSE, details =TRUE, r2limen =0.75, all =FALSE)
Arguments
fload: matrix: loadings of the factor structure
reppar: numeric: number of replications for the parallel analysis
repsim: numeric: number of replications of the matrix correlation simulation
N: numeric: number of subjects
quantile: numeric: quantile for the parallel analysis
model: character: "components" or "factors"
adequacy: logical: if TRUE prints the recovered population matrix from the factor structure
details: logical: if TRUE outputs details of the repsim
simulations
r2limen: numeric: R2 limen value for the R2 Nelson index
all: logical: if TRUE computes the Bentler and Yuan index (very long computing time to consider)
Returns
values: the output depends of the logical value of details. If FALSE, returns only statistics about the eigenvalues: mean, median, quantile, standard deviation, minimum and maximum. If TRUE, returns also details about the repsim simulations. If adequacy = TRUE returns the recovered factor structure
Examples
## Not run:# .......................................................# Example inspired from Zwick and Velicer (1986, table 2, p. 437)## ................................................................... nFactors <-3 unique <-0.2 loadings <-0.5 nsubjects <-180 repsim <-30 zwick <- generateStructure(var=36, mjc=nFactors, pmjc=12, loadings=loadings, unique=unique)## ...................................................................# Produce statistics about a replication of a parallel analysis on# 30 sampled correlation matrices mzwick.fa <- structureSim(fload=as.matrix(zwick), reppar=30, repsim=repsim, N=nsubjects, quantile=0.5, model="factors") mzwick <- structureSim(fload=as.matrix(zwick), reppar=30, repsim=repsim, N=nsubjects, quantile=0.5, all=TRUE)# Very long execution time that could be used only with model="components"# mzwick <- structureSim(fload=as.matrix(zwick), reppar=30,# repsim=repsim, N=nsubjects, quantile=0.5, all=TRUE) par(mfrow=c(2,1)) plot(x=mzwick, nFactors=nFactors, index=c(1:14), cex.axis=0.7, col="red") plot(x=mzwick.fa, nFactors=nFactors, index=c(1:11), cex.axis=0.7, col="red") par(mfrow=c(1,1)) par(mfrow=c(2,1)) boxplot(x=mzwick, nFactors=3, cex.axis=0.8, vLine="blue", col="red") boxplot(x=mzwick.fa, nFactors=3, cex.axis=0.8, vLine="blue", col="red", xlab="Components") par(mfrow=c(1,1))# ......................................................## End(Not run)
References
Raiche, G., Walls, T. A., Magis, D., Riopel, M. and Blais, J.-G. (2013). Non-graphical solutions for Cattell's scree test. Methodology, 9(1), 23-29.
Zwick, W. R. and Velicer, W. F. (1986). Comparison of five rules for determining the number of components to retain. Psychological Bulletin, 99, 432-442.