Plot method for objects of class "poisson_naive_bayes" designed for a quick look at the class marginal or class conditional Poisson distributions of non-negative integer predictors.
## S3 method for class 'poisson_naive_bayes'plot(x, which =NULL, ask =FALSE, legend =TRUE, legend.box =FALSE, arg.num = list(), prob = c("marginal","conditional"),...)
Arguments
x: object of class inheriting from "poisson_naive_bayes".
which: variables to be plotted (all by default). This can be any valid indexing vector or vector containing names of variables.
ask: logical; if TRUE, the user is asked before each plot, see par(ask=.).
legend: logical; if TRUE a legend will be be plotted.
legend.box: logical; if TRUE a box will be drawn around the legend.
arg.num: other parameters to be passed as a named list to matplot.
prob: character; if "marginal" then marginal distributions of predictor variables for each class are visualised and if "conditional" then the class conditional distributions of predictor variables are depicted. By default, prob="marginal".
...: not used.
Details
Class marginal or class conditional Poisson distributions are visualised by matplot.
The parameter prob controls the kind of probabilities to be visualized for each individual predictor Xi. It can take on two values:
"marginal": P(Xi∣class)∗P(class)
"conditional": P(Xi∣class)
Examples
cols <-10; rows <-100M <- matrix(rpois(rows * cols, lambda =3), nrow = rows, ncol = cols)# is.integer(M) # [1] TRUEy <- factor(sample(paste0("class", LETTERS[1:2]), rows,TRUE))colnames(M)<- paste0("V", seq_len(ncol(M)))laplace <-0### Train the Poisson Naive Bayespnb <- poisson_naive_bayes(x = M, y = y, laplace = laplace)# Visualize class conditional Poisson distributions corresponding# to the first featureplot(pnb, which =1, prob ="conditional")# Visualize class marginal Poisson distributions corresponding# to the first featureplot(pnb, which =1)