Error standard deviation estimation using organic lasso
Error standard deviation estimation using organic lasso
Solve the organic lasso problem σ~λ2=minβ∣∣y−Xβ∣∣22/n+2λ∣∣β∣∣12
with two pre-specified values of tuning parameter: λ1=logp/n, and λ2, which is a Monte-Carlo estimate of ∣∣XTe∣∣∞2/n2, where e is n-dimensional standard normal.
olasso(x, y, intercept =TRUE, thresh =1e-08)
Arguments
x: An n by p design matrix. Each row is an observation of p features.
y: A response vector of size n.
intercept: Indicator of whether intercept should be fitted. Default to be TRUE.
thresh: Threshold value for underlying optimization algorithm to claim convergence. Default to be 1e-8.
Returns
A list object containing:
n and p:: The dimension of the problem.
lam_1, lam_2:: log(p)/n, and an Monte-Carlo estimate of ∣∣XTe∣∣∞2/n2, where e is n-dimensional standard normal.
a0_1, a0_2:: Estimate of intercept, corresponding to lam_1 and lam_2.
beta_1, beta_2:: Organic lasso estimate of regression coefficients, corresponding to lam_1 and lam_2.
sig_obj_1, sig_obj_2:: Organic lasso estimate of the error standard deviation, corresponding to lam_1 and lam_2.