ncpen1.0.0 package

Unified Algorithm for Non-convex Penalized Estimation for Generalized Linear Models

coef.cv.ncpen

coef.cv.ncpen: extracts the optimal coefficients from cv.ncpen.

coef.ncpen

coef.ncpen: extract the coefficients from an ncpen object

control.ncpen

control.ncpen: do preliminary works for ncpen.

cv.ncpen

cv.ncpen: cross validation for ncpen

cv.ncpen.reg

cv.ncpen: cross validation for ncpen

excluded

Check whether a pair should be excluded from interactions.

fold.cv.ncpen

fold.cv.ncpen: extracts fold ids for cv.ncpen.

gic.ncpen

gic.ncpen: compute the generalized information criterion (GIC) for the...

interact.data

Construct Interaction Matrix

make.ncpen.data

Create ncpen Data Structure Using a Formula

native_cpp_ncpen_fun_

Native ncpen function.

native_cpp_nr_fun_

N/A.

native_cpp_obj_fun_

Native object function.

native_cpp_obj_grad_fun_

Native object gradient function.

native_cpp_obj_hess_fun_

Native object Hessian function.

native_cpp_p_ncpen_fun_

Native point ncpen function.

native_cpp_pen_fun_

Native Penalty function.

native_cpp_pen_grad_fun_

Native Penalty Gradient function.

native_cpp_qlasso_fun_

Native QLASSO function.

native_cpp_set_dev_mode_

N/A.

ncpen-package

ncpen: A package for non-convex penalized estimation for generalized l...

ncpen

ncpen: nonconvex penalized estimation

ncpen.reg

ncpen.reg: nonconvex penalized estimation

plot.cv.ncpen

plot.cv.ncpen: plot cross-validation error curve.

plot.ncpen

plot.ncpen: plots coefficients from an ncpen object.

power.data

Power Data

predict.ncpen

predict.ncpen: make predictions from an ncpen object

sam.gen.ncpen

sam.gen.ncpen: generate a simulated dataset.

same.base

Check whether column names are derivation of a same base.

to.indicators

Construct Indicator Matrix

to.ncpen.x.mat

Convert a data.frame to a ncpen usable matrix.

An efficient unified nonconvex penalized estimation algorithm for Gaussian (linear), binomial Logit (logistic), Poisson, multinomial Logit, and Cox proportional hazard regression models. The unified algorithm is implemented based on the convex concave procedure and the algorithm can be applied to most of the existing nonconvex penalties. The algorithm also supports convex penalty: least absolute shrinkage and selection operator (LASSO). Supported nonconvex penalties include smoothly clipped absolute deviation (SCAD), minimax concave penalty (MCP), truncated LASSO penalty (TLP), clipped LASSO (CLASSO), sparse ridge (SRIDGE), modified bridge (MBRIDGE) and modified log (MLOG). For high-dimensional data (data set with many variables), the algorithm selects relevant variables producing a parsimonious regression model. Kim, D., Lee, S. and Kwon, S. (2018) <arXiv:1811.05061>, Lee, S., Kwon, S. and Kim, Y. (2016) <doi:10.1016/j.csda.2015.08.019>, Kwon, S., Lee, S. and Kim, Y. (2015) <doi:10.1016/j.csda.2015.07.001>. (This research is funded by Julian Virtue Professorship from Center for Applied Research at Pepperdine Graziadio Business School and the National Research Foundation of Korea.)

  • Maintainer: Dongshin Kim
  • License: GPL (>= 3)
  • Last published: 2018-11-17