This function drops variables that have low communality values and/or are common indicators (i.e., correlates more than one latent variables).
fs.dimred(fn,DF,min_comm=0.25,com_comm=0.25)
Arguments
fn: It is a list variable of the output of a principal (PCA), a fa (FA), or an ndr (NDA) function.
DF: Numeric data frame, or a numeric matrix of the data table
min_comm: Scalar between 0 to 1. Minimal communality value, which a variable has to be achieved. The default value is 0.25.
com_comm: Scalar between 0 to 1. The minimal difference value between loadings. The default value is 0.25.
Details
This function only works with principal, and fa, and ndr functions.
This function drops each variable that has a low communality value (under min_comm value). In other words, that variable does not fit enough of any latent variable.
This function also drops so-called common indicators, which correlate highly with more than one latent variable. And the difference in the correlation is either lower than the com_comm value or the greatest absolute factor loading value is not twice greater than the second greatest factor loading.
Returns
dropped_low: Numeric data frame or numeric matrix. Set of indicators (i.e. variables), which are dropped by their low communalities. This value is NULL if a correlation matrix is used as an input or there is no dropped indicator.
dropped_com: Numeric data frame or numeric matrix. Set of dropped common indicators (i.e. common variables). This value is NULL if a correlation matrix is used as an input or there is no dropped indicator.
remain_DF: Numeric data frame or numeric matrix. Set of retained indicators
...: Other outputs came from
References
Abonyi, J., Czvetkó, T., Kosztyán, Z. T., & Héberger, K. (2022). Factor analysis, sparse PCA, and Sum of Ranking Differences-based improvements of the Promethee-GAIA multicriteria decision support technique. Plos one, 17(2), e0264277. doi:10.1371/journal.pone.0264277
Author(s)
Zsolt T. Kosztyan*, Marcell T. Kurbucz, Attila I. Katona
data<-I40_2020
library(psych)# Principal Component Analysis (PCA)pca<-principal(data,nfactors=2,covar=TRUE)pca
# Feature selection with default valuesPCA<-fs.dimred(pca,data)PCA
# List of dropped, low communality value indicatorsprint(colnames(PCA$dropped_low))# List of dropped, common communality value indicatorsprint(colnames(PCA$dropped_com))# List of retained indicatorsprint(colnames(PCA$retained_DF))## Not run:# Principal Component Analysis (PCA) of correlation matrixpca<-principal(cor(data,method="spearman"),nfactors=2,covar=TRUE)pca
# Feature selectionmin_comm<-0.25# Minimal communality valuecom_comm<-0.20# Minimal common communality valuePCA<-fs.dimred(pca,cor(data,method="spearman"),min_comm,com_comm)PCA
## End(Not run)