covar: If this value is FALSE (default), it finds the correlation matrix from the raw data. If this value is TRUE, it uses the matrix r as a correlation/similarity matrix.
min_R: Minimal square correlation between indicators (default: 0).
min_comm: Minimal number of indicators per community (default: 2).
Gamma: Gamma parameter in multiresolution null modell (default: 1).
null_model_type: '1' Differential Newmann-Grivan's null model, '2' The null model is the mean of square correlations between indicators, '3' The null model is the specified minimal square correlation, '4' Newmann-Grivan's modell (default)
min_evalue: Minimal eigenvector centrality value (default: 0)
min_communality: Minimal communality value of indicators (default: 0)
com_communalities: Minimal common communalities (default: 0)
use_rotation: FALSE no rotation (default), TRUE the rotation is used.
rotation: "none", "varimax", "quartimax", "promax", "oblimin", "simplimax", and "cluster" are possible rotations/transformations of the solution. "oblimin" is the default, if use_rotation is TRUE.
weight: The weights of columns. The defalt is NULL (no weights).
seed: default seed value (default=NULL, no seed)
Details
NDA both works on low and high simple size datasets. If min_evalue=min_communality=com_communalities=0 than there is no feature selection.
Returns
communality: Communality estimates for each item. These are merely the sum of squared factor loadings for that item. It can be interpreted in correlation matrices.
loadings: A standard loading matrix of class “loadings".
uniqueness: Uniqueness values of indicators.
factors: Number of found factors.
EVCs: The list eigenvector centrality value of indicators.
membership: The membership value of indicators.
weight: The weight of indicators.
scores: Estimates of the factor scores are reported (if covar=FALSE).
centers: Colum mean of unstandardized score values.
n.obs: Number of observations specified or found.
use_rotation: FALSE no rotation (default), TRUE the rotation is used.
rotation: "none", "varimax", "quartimax", "promax", "oblimin", "simplimax", and "cluster" are possible rotations/transformations of the solution. "oblimin" is the default, if use_rotation is TRUE.
fn: Factor name: NDA
seed: applied seed value (default=NULL, no seed)
Call: Callback function
References
Kosztyan, Z. T., Kurbucz, M. T., & Katona, A. I. (2022). Network-based dimensionality reduction of high-dimensional, low-sample-size datasets. Knowledge-Based Systems, 109180. doi:10.1016/j.knosys.2022.109180
Author(s)
Zsolt T. Kosztyan*, Marcell T. Kurbucz, Attila I. Katona
# Dimension reduction without using any hyperparametersdata(swiss)df<-swiss
p<-ndr(df)summary(p)plot(p)biplot(p)# Dimension reduction with using hyperparameters# min_R=0.1 # The mininal square correlation must be grater than 0.1p<-ndr(df,min_R =0.1)summary(p)plot(p)# min_evalue=0.1 # Minimal evector centalities must be greater than 0.1p<-ndr(df,min_evalue =0.1)summary(p)plot(p)# minimal and common communality value must be greater than 0.25p<-ndr(df,min_communality =0.25, com_communalities =0.25)# Print factor matrixcor(p$scores)plot(p)# Use factor rotationp<-ndr(df,min_communality =0.25, com_communalities =0.25,use_rotation=TRUE)# Print factor matrixcor(p$scores)biplot(p)# Data reduction - clustering# Distance is Euclidean's distance# covar=TRUE means only the distance matrix is considered.q<-ndr(1-normalize(as.matrix(dist(df))),covar=TRUE)summary(q)plot(q)