plot.nda function

Plot function for Generalized Network-based Dimensionality Reduction and Analysis (GNDA)

Plot function for Generalized Network-based Dimensionality Reduction and Analysis (GNDA)

Plot variable network graph

## S3 method for class 'nda' plot(x, cuts=0.3, interactive=TRUE,edgescale=1.0,labeldist=-1.5,show_weights=FALSE,...)

Arguments

  • x: an object of class 'NDA'.
  • cuts: minimal square correlation value for an edge in the correlation network graph (default 0.3).
  • interactive: Plot interactive visNetwork graph or non-interactive igraph plot (default TRUE).
  • edgescale: Proportion scale value of edge width.
  • labeldist: Vertex label distance in non-interactive igraph plot (default value =-1.5).
  • show_weights: Show edge weights (default FALSE)).
  • ...: other graphical parameters.

References

Kosztyán, Z. T., Katona, A. I., Kurbucz, M. T., & Lantos, Z. (2024). Generalized network-based dimensionality analysis. Expert Systems with Applications, 238, 121779. <URL: https://doi.org/10.1016/j.eswa.2023.121779>.

Author(s)

Zsolt T. Kosztyan*, Marcell T. Kurbucz, Attila I. Katona

e-mail*: kosztyan.zsolt@gtk.uni-pannon.hu

See Also

biplot, summary, ndr.

Examples

# Plot function with feature selection data("CrimesUSA1990.X") df<-CrimesUSA1990.X p<-ndr(df) biplot(p,main="Biplot of CrimesUSA1990 without feature selection") # Plot function with feature selection # minimal eigen values (min_evalue) is 0.0065 # minimal communality value (min_communality) is 0.1 # minimal common communality value (com_communalities) is 0.1 p<-ndr(df,min_evalue = 0.0065,min_communality = 0.1,com_communalities = 0.1) # Plot with default (cuts=0.3) plot(p) # Plot with higher cuts plot(p,cuts=0.6) # GNDA is used for clustering, where the similarity function is the 1-Euclidean distance # Data is the swiss data SIM<-1-normalize(as.matrix(dist(swiss))) q<-ndr(SIM,covar = TRUE) plot(q,interactive = FALSE)