Calculation of predicted values of Generalized Network-based Dimensionality Reduction and Analysis (GNDA)
Calculation of predicted values of Generalized Network-based Dimensionality Reduction and Analysis (GNDA)
## S3 method for class 'nda'predict(object, newdata,...)
Arguments
object: An object of class 'nda'.
newdata: A required data frame in which to look for variables with which to predict.
...: further arguments passed to or from other methods.
Returns
Residual values (data frame)
References
Kosztyán, Z. T., Katona, A. I., Kurbucz, M. T., & Lantos, Z. (2024). Generalized network-based dimensionality analysis. Expert Systems with Applications, 238, 121779. <URL: https://doi.org/10.1016/j.eswa.2023.121779>.
Author(s)
Zsolt T. Kosztyan*, Marcell T. Kurbucz, Attila I. Katona
# Example of prediction function of GNDAset.seed(1)# Fix the random seeddata(swiss)# Use Swiss datasetresdata<-swiss
sample <- sample(c(TRUE,FALSE), nrow(resdata), replace=TRUE, prob=c(0.9,0.1))train <- resdata[sample,]# Split the dataset to train and testtest <- resdata[!sample,]p<-ndr(train)# Use GNDA only on the train datasetP<-ndr(swiss)# USE GNDA on the entire datasetres<-predict(p,test)# Calculate the prediction to the test datasetreal<-P$scores[!sample,]cor(real,res)# The correlation between original and predicted values