predict.nda function

Calculation of predicted values of Generalized Network-based Dimensionality Reduction and Analysis (GNDA)

Calculation of predicted values of Generalized Network-based Dimensionality Reduction and Analysis (GNDA)

## S3 method for class 'nda' predict(object, newdata, ...)

Arguments

  • object: An object of class 'nda'.
  • newdata: A required data frame in which to look for variables with which to predict.
  • ...: further arguments passed to or from other methods.

Returns

Residual values (data frame)

References

Kosztyán, Z. T., Katona, A. I., Kurbucz, M. T., & Lantos, Z. (2024). Generalized network-based dimensionality analysis. Expert Systems with Applications, 238, 121779. <URL: https://doi.org/10.1016/j.eswa.2023.121779>.

Author(s)

Zsolt T. Kosztyan*, Marcell T. Kurbucz, Attila I. Katona

e-mail*: kosztyan.zsolt@gtk.uni-pannon.hu

See Also

plot, print, ndr.

Examples

# Example of prediction function of GNDA set.seed(1) # Fix the random seed data(swiss) # Use Swiss dataset resdata<-swiss sample <- sample(c(TRUE, FALSE), nrow(resdata), replace=TRUE, prob=c(0.9,0.1)) train <- resdata[sample, ] # Split the dataset to train and test test <- resdata[!sample, ] p<-ndr(train) # Use GNDA only on the train dataset P<-ndr(swiss) # USE GNDA on the entire dataset res<-predict(p,test) # Calculate the prediction to the test dataset real<-P$scores[!sample, ] cor(real,res) # The correlation between original and predicted values