Summary function of Generalized Network-based Dimensionality Reduction and Analysis (GNDA)
Summary function of Generalized Network-based Dimensionality Reduction and Analysis (GNDA)
Print summary of Generalized Network-based Dimensionality Reduction and Analysis (GNDA)
## S3 method for class 'nda'summary(object, digits = getOption("digits"),...)
Arguments
object: an object of class 'nda'.
digits: the number of significant digits to use when add.stats = TRUE.
...: additional arguments affecting the summary produced.
Returns
communality: Communality estimates for each item. These are merely the sum of squared factor loadings for that item. It can be interpreted in correlation matrices.
loadings: A standard loading matrix of class “loadings".
uniqueness: Uniqueness values of indicators.
factors: Number of found factors.
scores: Estimates of the factor scores are reported (if covar=FALSE).
n.obs: Number of observations specified or found.
References
Kosztyán, Z. T., Katona, A. I., Kurbucz, M. T., & Lantos, Z. (2024). Generalized network-based dimensionality analysis. Expert Systems with Applications, 238, 121779. <URL: https://doi.org/10.1016/j.eswa.2023.121779>.
Author(s)
Zsolt T. Kosztyan*, Marcell T. Kurbucz, Attila I. Katona
# Example of summary function of NDA without feature selectiondata("CrimesUSA1990.X")df<-CrimesUSA1990.X
p<-ndr(df)summary(p)# Example of summary function of NDA with feature selection# minimal eigen values (min_evalue) is 0.0065# minimal communality value (min_communality) is 0.1# minimal common communality value (com_communalities) is 0.1p<-ndr(df,min_evalue =0.0065,min_communality =0.1,com_communalities =0.1)summary(p)