Summary function of Generalized Network-based Dimensionality Reduction and Linear Regression Model (NDRLM)
Summary function of Generalized Network-based Dimensionality Reduction and Linear Regression Model (NDRLM)
Print summary of Generalized Network-based Dimensionality Reduction and Linear Regression Model (NDRLM)
## S3 method for class 'ndrlm'summary(object, digits = getOption("digits"),...)
Arguments
object: an object of class 'ndrlm'.
digits: the number of significant digits to use when add.stats = TRUE.
...: additional arguments affecting the summary produced.
Returns
Call: Callback function
fval: Objective function for fitting
pareto: in the case of multiple objectives TRUE (default value) provides pareto-optimal solution, while FALSE provides weighted mean of objective functions (see out_weights)
X: A numeric data frame of input variables
Y: A numeric data frame of output variables
NDA: GNDA object, which is the result of model reduction and features selection
fits: List of linear regrassion models
NDA_weight: Weights of input variables (used in ndr)
NDA_min_evalue: Optimized minimal eigenvector centrality value (used in ndr)
NDA_min_communality: Optimized minimal communality value of indicators (used in ndr)
NDA_com_communalities: Optimized minimal common communalities (used in ndr)
NDA_min_R: Optimized minimal square correlation between indicators (used in ndr)
NSGA: Outpot structure of NSGA-II optimization (list), if the optimization value is true (see in mco::nsga2)
fn: Function (regression) name: NDLM
References
Kosztyán, Z. T., Katona, A. I., Kurbucz, M. T., & Lantos, Z. (2024). Generalized network-based dimensionality analysis. Expert Systems with Applications, 238, 121779. <URL: https://doi.org/10.1016/j.eswa.2023.121779>.
Author(s)
Zsolt T. Kosztyan*, Marcell T. Kurbucz, Attila I. Katona