prc function

Build precision-recall curve

Build precision-recall curve

Builds a precision-recall curve for a 'nestedcv' model using prediction()

and performance() functions from the ROCR package and returns an object of class 'prc' for plotting.

prc(...) ## Default S3 method: prc(response, predictor, positive = 2, ...) ## S3 method for class 'data.frame' prc(output, ...) ## S3 method for class 'nestcv.glmnet' prc(object, ...) ## S3 method for class 'nestcv.train' prc(object, ...) ## S3 method for class 'nestcv.SuperLearner' prc(object, ...) ## S3 method for class 'outercv' prc(object, ...) ## S3 method for class 'repeatcv' prc(object, ...)

Arguments

  • ...: other arguments
  • response: binary factor vector of response of default order controls, cases.
  • predictor: numeric vector of probabilities
  • positive: Either an integer 1 or 2 for the level of response factor considered to be 'positive' or 'relevant', or a character value for that factor.
  • output: data.frame with columns testy containing observed response from test folds, and predyp predicted probabilities for classification
  • object: a 'nestcv.glmnet', 'nestcv.train', 'nestcv.SuperLearn', 'outercv' or 'repeatcv' S3 class results object.

Returns

An object of S3 class 'prc' containing the following fields: - recall: vector of recall values

  • precision: vector of precision values

  • auc: area under precision-recall curve value using trapezoid method

  • baseline: baseline precision value

Examples

library(mlbench) data(Sonar) y <- Sonar$Class x <- Sonar[, -61] fit1 <- nestcv.glmnet(y, x, family = "binomial", alphaSet = 1, cv.cores = 2) fit1$prc <- prc(fit1) # calculate precision-recall curve fit1$prc$auc # precision-recall AUC value fit2 <- nestcv.train(y, x, method = "gbm", cv.cores = 2) fit2$prc <- prc(fit2) fit2$prc$auc plot(fit1$prc, ylim = c(0, 1)) lines(fit2$prc, col = "red") res <- nestcv.glmnet(y, x, family = "binomial", alphaSet = 1) |> repeatcv(n = 4, rep.cores = 2) res$prc <- prc(res) # precision-recall curve on repeated predictions plot(res$prc)
  • Maintainer: Myles Lewis
  • License: MIT + file LICENSE
  • Last published: 2025-03-10