Builds a precision-recall curve for a 'nestedcv' model using prediction()
and performance() functions from the ROCR package and returns an object of class 'prc' for plotting.
prc(...)## Default S3 method:prc(response, predictor, positive =2,...)## S3 method for class 'data.frame'prc(output,...)## S3 method for class 'nestcv.glmnet'prc(object,...)## S3 method for class 'nestcv.train'prc(object,...)## S3 method for class 'nestcv.SuperLearner'prc(object,...)## S3 method for class 'outercv'prc(object,...)## S3 method for class 'repeatcv'prc(object,...)
Arguments
...: other arguments
response: binary factor vector of response of default order controls, cases.
predictor: numeric vector of probabilities
positive: Either an integer 1 or 2 for the level of response factor considered to be 'positive' or 'relevant', or a character value for that factor.
output: data.frame with columns testy containing observed response from test folds, and predyp predicted probabilities for classification
object: a 'nestcv.glmnet', 'nestcv.train', 'nestcv.SuperLearn', 'outercv' or 'repeatcv' S3 class results object.
Returns
An object of S3 class 'prc' containing the following fields: - recall: vector of recall values
precision: vector of precision values
auc: area under precision-recall curve value using trapezoid method