pred_nestcv_glmnet function

Prediction wrappers to use fastshap with nestedcv

Prediction wrappers to use fastshap with nestedcv

Prediction wrapper functions to enable the use of the fastshap package for generating SHAP values from nestedcv trained models.

pred_nestcv_glmnet(x, newdata) pred_nestcv_glmnet_class(cl) pred_train(x, newdata) pred_train_class(cl) pred_SuperLearner(x, newdata)

Arguments

  • x: a nestcv.glmnet or nestcv.train object
  • newdata: a matrix of new data
  • cl: integer representing which class to predict

Returns

prediction wrapper function designed for use with fastshap::explain()

Details

These prediction wrapper functions are designed to be used with the fastshap package. The functions pred_nestcv_glmnet and pred_train work for nestcv.glmnet and nestcv.train models respectively for either binary classification or regression.

For multiclass classification use pred_nestcv_glmnet_class(1), pred_nestcv_glmnet_class(2) etc for each class. Similarly pred_train_class(1), pred_train_class(2) etc for nestcv.train objects.

Examples

library(fastshap) # Boston housing dataset library(mlbench) data(BostonHousing2) dat <- BostonHousing2 y <- dat$cmedv x <- subset(dat, select = -c(cmedv, medv, town, chas)) # Fit a glmnet model using nested CV # Only 3 outer CV folds and 1 alpha value for speed fit <- nestcv.glmnet(y, x, family = "gaussian", n_outer_folds = 3, alphaSet = 1) # Generate SHAP values using fastshap::explain # Only using 5 repeats here for speed, but recommend higher values of nsim sh <- explain(fit, X=x, pred_wrapper = pred_nestcv_glmnet, nsim = 1) # Plot overall variable importance plot_shap_bar(sh, x) # Plot beeswarm plot plot_shap_beeswarm(sh, x, size = 1)
  • Maintainer: Myles Lewis
  • License: MIT + file LICENSE
  • Last published: 2025-03-10