train_summary function

Summarise performance on outer training folds

Summarise performance on outer training folds

Calculates performance metrics on outer training folds: confusion matrix, accuracy and balanced accuracy for classification; ROC AUC for binary classification; RMSE, R^2 and mean absolute error (MAE) for regression.

train_summary(x)

Arguments

  • x: a nestcv.glmnet, nestcv.train or outercv object

Returns

Returns performance metrics from outer training folds, see predSummary

Details

Note: the argument outer_train_predict must be set to TRUE in the original call to either nestcv.glmnet, nestcv.train or outercv.

Examples

data(iris) x <- iris[, 1:4] y <- iris[, 5] fit <- nestcv.glmnet(y, x, family = "multinomial", alpha = 1, outer_train_predict = TRUE, n_outer_folds = 3) summary(fit) innercv_summary(fit) train_summary(fit) fit2 <- nestcv.train(y, x, model="svm", outer_train_predict = TRUE, n_outer_folds = 3, cv.cores = 2) summary(fit2) innercv_summary(fit2) train_summary(fit2)

See Also

predSummary

  • Maintainer: Myles Lewis
  • License: MIT + file LICENSE
  • Last published: 2025-03-10