dgr function

Indegree, outdegree and degree of the vertices

Indegree, outdegree and degree of the vertices

Computes the requested degree measure for each node in the graph.

dgr( graph, cmode = "degree", undirected = getOption("diffnet.undirected", FALSE), self = getOption("diffnet.self", FALSE), valued = getOption("diffnet.valued", FALSE) ) ## S3 method for class 'diffnet_degSeq' plot( x, breaks = min(100L, nrow(x)/5), freq = FALSE, y = NULL, log = "xy", hist.args = list(), slice = ncol(x), xlab = "Degree", ylab = "Freq", ... )

Arguments

  • graph: Any class of accepted graph format (see netdiffuseR-graphs).
  • cmode: Character scalar. Either "indegree", "outdegree" or "degree".
  • undirected: Logical scalar. When TRUE only the lower triangle of the adjacency matrix will considered (faster).
  • self: Logical scalar. When TRUE autolinks (loops, self edges) are allowed (see details).
  • valued: Logical scalar. When TRUE weights will be considered. Otherwise non-zero values will be replaced by ones.
  • x: An diffnet_degSeq object
  • breaks: Passed to hist.
  • freq: Logical scalar. When TRUE the y-axis will reflex counts, otherwise densities.
  • y: Ignored
  • log: Passed to plot (see par).
  • hist.args: Arguments passed to hist.
  • slice: Integer scalar. In the case of dynamic graphs, number of time point to plot.
  • xlab: Character scalar. Passed to plot.
  • ylab: Character scalar. Passed to plot.
  • ...: Further arguments passed to plot.

Returns

A numeric matrix of size nTn * T. In the case of plot, returns an object of class histogram.

Examples

# Comparing degree measurements --------------------------------------------- # Creating an undirected graph graph <- rgraph_ba() graph data.frame( In=dgr(graph, "indegree", undirected = FALSE), Out=dgr(graph, "outdegree", undirected = FALSE), Degree=dgr(graph, "degree", undirected = FALSE) ) # Testing on Korean Family Planning (weighted graph) ------------------------ data(kfamilyDiffNet) d_unvalued <- dgr(kfamilyDiffNet, valued=FALSE) d_valued <- dgr(kfamilyDiffNet, valued=TRUE) any(d_valued!=d_unvalued) # Classic Scale-free plot --------------------------------------------------- set.seed(1122) g <- rgraph_ba(t=1e3-1) hist(dgr(g)) # Since by default uses logscale, here we suppress the warnings # on points been discarded for <=0. suppressWarnings(plot(dgr(g)))

See Also

Other statistics: bass, classify_adopters(), cumulative_adopt_count(), ego_variance(), exposure(), hazard_rate(), infection(), moran(), struct_equiv(), threshold(), vertex_covariate_dist()

Other visualizations: diffusionMap(), drawColorKey(), grid_distribution(), hazard_rate(), plot_adopters(), plot_diffnet2(), plot_diffnet(), plot_infectsuscep(), plot_threshold(), rescale_vertex_igraph()

Author(s)

George G. Vega Yon