diag_expand function

Creates a square matrix suitable for spatial statistics models.

Creates a square matrix suitable for spatial statistics models.

diag_expand(...) ## S3 method for class 'list' diag_expand(graph, self = is_self(graph), valued = is_valued(graph), ...) ## S3 method for class 'diffnet' diag_expand(graph, self = is_self(graph), valued = is_valued(graph), ...) ## S3 method for class 'matrix' diag_expand(graph, nper, self = is_self(graph), valued = is_valued(graph), ...) ## S3 method for class 'array' diag_expand(graph, self = is_self(graph), valued = is_valued(graph), ...) ## S3 method for class 'dgCMatrix' diag_expand(graph, nper, self = is_self(graph), valued = is_valued(graph), ...)

Arguments

  • ...: Further arguments to be passed to the method.
  • graph: Any class of accepted graph format (see netdiffuseR-graphs).
  • self: Logical scalar. When TRUE autolinks (loops, self edges) are allowed (see details).
  • valued: Logical scalar. When TRUE weights will be considered. Otherwise non-zero values will be replaced by ones.
  • nper: Integer scalar. Number of time periods of the graph.

Returns

A square matrix of class dgCMatrix of size (nnode(g)*nper)^2

Examples

# Simple example ------------------------------------------------------------ set.seed(23) g <- rgraph_er(n=10, p=.5, t=2,undirected=TRUE) # What we've done: A list with 2 bernoulli graphs g # Expanding to a 20*20 matrix with structural zeros on the diagonal # and on cell 'off' adjacency matrix diag_expand(g)