plot_adopters function

Visualize adopters and cumulative adopters

Visualize adopters and cumulative adopters

plot_adopters( obj, freq = FALSE, what = c("adopt", "cumadopt"), add = FALSE, include.legend = TRUE, include.grid = TRUE, pch = c(21, 24), type = c("b", "b"), ylim = if (!freq) c(0, 1) else NULL, lty = c(1, 1), col = c("black", "black"), bg = c("tomato", "gray"), xlab = "Time", ylab = ifelse(freq, "Frequency", "Proportion"), main = "Adopters and Cumulative Adopters", ... )

Arguments

  • obj: Either a diffnet object or a cumulative a doption matrix.
  • freq: Logical scalar. When TRUE frequencies are plotted instead of proportions.
  • what: Character vector of length 2. What to plot.
  • add: Logical scalar. When TRUE lines and dots are added to the current graph.
  • include.legend: Logical scalar. When TRUE a legend of the graph is plotted.
  • include.grid: Logical scalar. When TRUE, the grid of the graph is drawn
  • pch: Integer vector of length 2. See matplot.
  • type: Character vector of length 2. See matplot.
  • ylim: Numeric vector of length 2. Sets the plotting limit for the y-axis.
  • lty: Numeric vector of length 2. See matplot.
  • col: Character vector of length 2. See matplot.
  • bg: Character vector of length 2. See matplot.
  • xlab: Character scalar. Name of the x-axis.
  • ylab: Character scalar. Name of the y-axis.
  • main: Character scalar. Title of the plot
  • ...: Further arguments passed to matplot.

Returns

A matrix as described in cumulative_adopt_count.

Examples

# Generating a random diffnet ----------------------------------------------- set.seed(821) diffnet <- rdiffnet(100, 5, seed.graph="small-world", seed.nodes="central") plot_adopters(diffnet) # Alternatively, we can use a TOA Matrix toa <- sample(c(NA, 2010L,2015L), 20, TRUE) mat <- toa_mat(toa) plot_adopters(mat$cumadopt)

See Also

Other visualizations: dgr(), diffusionMap(), drawColorKey(), grid_distribution(), hazard_rate(), plot_diffnet2(), plot_diffnet(), plot_infectsuscep(), plot_threshold(), rescale_vertex_igraph()

Author(s)

George G. Vega Yon