Computes covariate distance between connected vertices
vertex_covariate_dist(graph, X, p = 2) vertex_mahalanobis_dist(graph, X, S)
graph
: A square matrix of size of class dgCMatrix.X
: A numeric matrix of size . Vertices attributesp
: Numeric scalar. Norm to computeS
: Square matrix of size ncol(x)
. Usually the var-covar matrix.A matrix of size of class dgCMatrix
. Will be symmetric only if graph
is symmetric.
Faster than dist
, these functions compute distance metrics between pairs of vertices that are connected (otherwise skip).
The function vertex_covariate_dist
is the simil of dist
and returns p-norms (Minkowski distance). It is implemented as follows (for each pair of vertices):
In the case of mahalanobis distance, for each pair of vertex , the distance is computed as follows:
# Distance (aka p norm) ----------------------------------------------------- set.seed(123) G <- rgraph_ws(20, 4, .1) X <- matrix(runif(40), ncol=2) vertex_covariate_dist(G, X)[1:5, 1:5] # Mahalanobis distance ------------------------------------------------------ S <- var(X) M <- vertex_mahalanobis_dist(G, X, S) # Example with diffnet objects ---------------------------------------------- data(medInnovationsDiffNet) X <- cbind( medInnovationsDiffNet[["proage"]], medInnovationsDiffNet[["attend"]] ) S <- var(X, na.rm=TRUE) ans <- vertex_mahalanobis_dist(medInnovationsDiffNet, X, S)
Mahalanobis distance. (2016, September 27). In Wikipedia, The Free Encyclopedia. Retrieved 20:31, September 27, 2016, from https://en.wikipedia.org/w/index.php?title=Mahalanobis_distance&oldid=741488252
mahalanobis
in the stats package.
Other statistics: bass
, classify_adopters()
, cumulative_adopt_count()
, dgr()
, ego_variance()
, exposure()
, hazard_rate()
, infection()
, moran()
, struct_equiv()
, threshold()
Other dyadic-level comparison functions: matrix_compare()
, vertex_covariate_compare()
George G. Vega Yon
Useful links