vertex_covariate_dist function

Computes covariate distance between connected vertices

Computes covariate distance between connected vertices

vertex_covariate_dist(graph, X, p = 2) vertex_mahalanobis_dist(graph, X, S)

Arguments

  • graph: A square matrix of size nn of class dgCMatrix.
  • X: A numeric matrix of size nKn * K. Vertices attributes
  • p: Numeric scalar. Norm to compute
  • S: Square matrix of size ncol(x). Usually the var-covar matrix.

Returns

A matrix of size nnn * n of class dgCMatrix. Will be symmetric only if graph is symmetric.

Details

Faster than dist, these functions compute distance metrics between pairs of vertices that are connected (otherwise skip).

The function vertex_covariate_dist is the simil of dist

and returns p-norms (Minkowski distance). It is implemented as follows (for each pair of vertices):

%D_{ij} = \left(\sum_{k=1}^K \left|X_{ik} - X_{jk}\right|^{p} \right)^{1/p}\mbox{ if }graph_{i,j}\neq 0%D(i,j) = [\sum_k abs(X(i,k) - X(j,k))^p]^(1/p) if graph(i,j) != 0

In the case of mahalanobis distance, for each pair of vertex (i,j)(i,j), the distance is computed as follows:

%D_{ij} = \left( (X_i - X_j)\times S \times (X_i - X_j)' \right)^{1/2}\mbox{ if }graph_{i,j}\neq 0%D(i,j) = sqrt[(X(i) - X(j)) %*% S %*% t(X(i) - X(j))] if graph(i,j) != 0

Examples

# Distance (aka p norm) ----------------------------------------------------- set.seed(123) G <- rgraph_ws(20, 4, .1) X <- matrix(runif(40), ncol=2) vertex_covariate_dist(G, X)[1:5, 1:5] # Mahalanobis distance ------------------------------------------------------ S <- var(X) M <- vertex_mahalanobis_dist(G, X, S) # Example with diffnet objects ---------------------------------------------- data(medInnovationsDiffNet) X <- cbind( medInnovationsDiffNet[["proage"]], medInnovationsDiffNet[["attend"]] ) S <- var(X, na.rm=TRUE) ans <- vertex_mahalanobis_dist(medInnovationsDiffNet, X, S)

References

Mahalanobis distance. (2016, September 27). In Wikipedia, The Free Encyclopedia. Retrieved 20:31, September 27, 2016, from https://en.wikipedia.org/w/index.php?title=Mahalanobis_distance&oldid=741488252

See Also

mahalanobis in the stats package.

Other statistics: bass, classify_adopters(), cumulative_adopt_count(), dgr(), ego_variance(), exposure(), hazard_rate(), infection(), moran(), struct_equiv(), threshold()

Other dyadic-level comparison functions: matrix_compare(), vertex_covariate_compare()

Author(s)

George G. Vega Yon