NetGSAq function

"Quick" Network-based Gene Set Analysis

"Quick" Network-based Gene Set Analysis

Quick version of NetGSA

NetGSAq(x, group, pathways, lambda_c = 1, file_e = NULL, file_ne = NULL, lklMethod="REHE", cluster = TRUE, sampling = TRUE, sample_n = NULL, sample_p = NULL, minsize=5, eta=0.1, lim4kappa=500)

Arguments

  • x: See x argument in NetGSA
  • group: See group argument in NetGSA
  • pathways: See pathways argument in NetGSA
  • lambda_c: See lambda_c argument in prepareAdjMat
  • file_e: See file_e argument in prepareAdjMat
  • file_ne: See file_ne argument in prepareAdjMat
  • lklMethod: See lklMethod argument in NetGSA
  • cluster: See cluster argument in prepareAdjMat
  • sampling: See sampling argument in NetGSA
  • sample_n: See sample_n argument in NetGSA
  • sample_p: See sample_p argument in NetGSA
  • minsize: See minsize argument in NetGSA
  • eta: See eta argument in NetGSA
  • lim4kappa: See lim4kappa argument in NetGSA

Details

This is a wrapper function to perform weighted adjacency matrix estimation and pathway enrichment in one step. For more details see ?prepareAdjMat and ?NetGSA.

Returns

A list with components - results: A data frame with pathway names, pathway sizes, p-values and false discovery rate corrected q-values, and test statistic for all pathways.

  • beta: Vector of fixed effects of length kpkp, the first k elements corresponds to condition 1, the second k to condition 2, etc.

  • s2.epsilon: Variance of the random errors ϵ\epsilon.

  • s2.gamma: Variance of the random effects γ\gamma.

  • graph: List of components needed in plot.NetGSA.

References

Ma, J., Shojaie, A. & Michailidis, G. (2016) Network-based pathway enrichment analysis with incomplete network information. Bioinformatics 32(20):165--3174. tools:::Rd_expr_doi("10.1093/bioinformatics/btw410")

Shojaie, A., & Michailidis, G. (2010). Network enrichment analysis in complex experiments. Statistical applications in genetics and molecular biology, 9(1), Article 22. https://pubmed.ncbi.nlm.nih.gov/20597848/.

Shojaie, A., & Michailidis, G. (2009). Analysis of gene sets based on the underlying regulatory network. Journal of Computational Biology, 16(3), 407-426. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3131840/

Author(s)

Michael Hellstern

See Also

prepareAdjMat, netEst.dir, netEst.undir

Examples

# Example takes ~3 minutes to run depending on computer ## load the data data("breastcancer2012_subset") ## consider genes from just 2 pathways genenames <- unique(c(pathways[["Adipocytokine signaling pathway"]], pathways[["Adrenergic signaling in cardiomyocytes"]])) sx <- x[match(rownames(x), genenames, nomatch = 0L) > 0L,] out_clusterq <- NetGSAq(sx, group, pathways_mat[c(1, 2), rownames(sx)])