This is a wrapper function to perform weighted adjacency matrix estimation and pathway enrichment in one step. For more details see ?prepareAdjMat and ?NetGSA.
Returns
A list with components - results: A data frame with pathway names, pathway sizes, p-values and false discovery rate corrected q-values, and test statistic for all pathways.
beta: Vector of fixed effects of length kp, the first k elements corresponds to condition 1, the second k to condition 2, etc.
s2.epsilon: Variance of the random errors ϵ.
s2.gamma: Variance of the random effects γ.
graph: List of components needed in plot.NetGSA.
References
Ma, J., Shojaie, A. & Michailidis, G. (2016) Network-based pathway enrichment analysis with incomplete network information. Bioinformatics 32(20):165--3174. tools:::Rd_expr_doi("10.1093/bioinformatics/btw410")
Shojaie, A., & Michailidis, G. (2010). Network enrichment analysis in complex experiments. Statistical applications in genetics and molecular biology, 9(1), Article 22. https://pubmed.ncbi.nlm.nih.gov/20597848/.
# Example takes ~3 minutes to run depending on computer## load the datadata("breastcancer2012_subset")## consider genes from just 2 pathwaysgenenames <- unique(c(pathways[["Adipocytokine signaling pathway"]], pathways[["Adrenergic signaling in cardiomyocytes"]]))sx <- x[match(rownames(x), genenames, nomatch =0L)>0L,]out_clusterq <- NetGSAq(sx, group, pathways_mat[c(1,2), rownames(sx)])