The pamrML functions are wrappers around pamr.train and pamr.predict that provide a more classical R modelling interface than the original versions.
pamrML(formula, data,...)
Arguments
formula: model formula
data: data frame
...: argument for the parmTrain function
Returns
For pamrML an object of class pamrML which adds an attribute to the original object returned by pamr.train (or pamrTrain).
The print method lists the names of the different components of the pamrML object.
The predict method returns a vector of predicted values
Details
The name of the response variable is kept as an attribute in the pamrML object to allow for predict methods that can be easily used for writing converter functions for use in the MLInterfaces
framework.
Examples
set.seed(120) x <- matrix(rnorm(1000*20), ncol=20) y <- sample(c(1:4), size=20, replace=TRUE)# for original pam mydata <- list(x=x, y=y) mytraindata <- list(x=x[,1:15],y=factor(y[1:15])) mytestdata <- list(x = x[,16:20], y = factor(y[16:20]))# for formula-based methods including pamrML alldf <- cbind.data.frame(t(mydata$x), y) traindf <- cbind.data.frame(t(mytraindata$x), y = mytraindata$y) testdf <- cbind.data.frame(t(mytestdata$x), y = mytestdata$y)### create pamrML object pamrMLObj <- pamrML(y ~ ., traindf) pamrMLObj
### test predict method predict(object = pamrMLObj, newdata = testdf, threshold =1)# threshold compulsory