pars: the numeric values of the parameters at which to evaluate the function fun and its derivatives.
fun: a function depending on the parameters pars that returns a numeric scalar.
...: Optional additional arguments to fun
.relStep: The relative step size to use in the finite differences. It defaults to the cube root of .Machine$double.eps
minAbsPar: The minimum magnitude of a parameter value that is considered non-zero. It defaults to zero meaning that any non-zero value will be considered different from zero.
Details
This function uses a second-order response surface design known as a Koschal design to determine the parameter values at which the function is evaluated.
Returns
A list with components - mean: the value of function fun evaluated at the parameter values pars
gradient: an approximate gradient (of length length(pars)).
Hessian: a matrix whose upper triangle contains an approximate Hessian.