Regular lasso model
regularmodel( fit, varsVec, covarsVec, catvarsVec, constraint = 1e-08, lassotype = c("regular", "adaptive", "adjusted"), stratVar = NULL, ... )
fit
: nlmixr2 fit.varsVec
: character vector of variables that need to be addedcovarsVec
: character vector of covariates that need to be addedcatvarsVec
: character vector of categorical covariates that need to be addedconstraint
: theta cutoff. below cutoff then the theta will be fixed to zero.lassotype
: must be 'regular' , 'adaptive', 'adjusted'stratVar
: A variable to stratify on for cross-validation....
: Other parameters to be passed to optimalTvaluelassoreturn fit of the selected lasso coefficients
## Not run: one.cmt <- function() { ini({ tka <- 0.45; label("Ka") tcl <- log(c(0, 2.7, 100)); label("Cl") tv <- 3.45; label("V") eta.ka ~ 0.6 eta.cl ~ 0.3 eta.v ~ 0.1 add.sd <- 0.7 }) model({ ka <- exp(tka + eta.ka) cl <- exp(tcl + eta.cl) v <- exp(tv + eta.v) linCmt() ~ add(add.sd) }) } d <- nlmixr2data::theo_sd d$SEX <-0 d$SEX[d$ID<=6] <-1 fit <- nlmixr2(one.cmt, d, est = "saem", control = list(print = 0)) varsVec <- c("ka","cl","v") covarsVec <- c("WT") catvarsVec <- c("SEX") # Model fit with regular lasso coefficients: lassoDf <- regularmodel(fit,varsVec,covarsVec,catvarsVec) # Model fit with adaptive lasso coefficients: lassoDf <- regularmodel(fit,varsVec,covarsVec,catvarsVec,lassotype='adaptive') # Model fit with adaptive-adjusted lasso coefficients: lassoDf <- regularmodel(fit,varsVec,covarsVec,catvarsVec, lassotype='adjusted') ## End(Not run)
Vishal Sarsani
Useful links