The Improved Stochastic Ranking Evolution Strategy (ISRES ) is an algorithm for nonlinearly constrained global optimization, or at least semi-global, although it has heuristics to escape local optima.
hin: function defining the inequality constraints, that is hin <= 0 for all components.
heq: function defining the equality constraints, that is heq = 0
for all components.
maxeval: maximum number of function evaluations.
pop.size: population size.
xtol_rel: stopping criterion for relative change reached.
nl.info: logical; shall the original NLopt info be shown.
deprecatedBehavior: logical; if TRUE (default for now), the old behavior of the Jacobian function is used, where the equality is ≥0
instead of ≤0. This will be reversed in a future release and eventually removed.
...: additional arguments passed to the function.
Returns
List with components: - par: the optimal solution found so far.
value: the function value corresponding to par.
iter: number of (outer) iterations, see maxeval.
convergence: integer code indicating successful completion (> 0) or a possible error number (< 0).
message: character string produced by NLopt and giving additional information.
Details
The evolution strategy is based on a combination of a mutation rule---with a log-normal step-size update and exponential smoothing---and differential variation---a Nelder-Mead-like update rule). The fitness ranking is simply via the objective function for problems without nonlinear constraints, but when nonlinear constraints are included the stochastic ranking proposed by Runarsson and Yao is employed.
This method supports arbitrary nonlinear inequality and equality constraints in addition to the bounds constraints.
Note
The initial population size for CRS defaults to 20x(n+1) in n dimensions, but this can be changed. The initial population must be at least n+1.
Examples
## Rosenbrock Banana objective functionrbf <-function(x){(1- x[1])^2+100*(x[2]- x[1]^2)^2}x0 <- c(-1.2,1)lb <- c(-3,-3)ub <- c(3,3)## The function as written above has a minimum of 0 at (1, 1)isres(x0 = x0, fn = rbf, lower = lb, upper = ub)## Now subject to the inequality that x[1] + x[2] <= 1.5hin <-function(x){x[1]+ x[2]-1.5}S <- isres(x0 = x0, fn = rbf, hin = hin, lower = lb, upper = ub, maxeval =2e5L, deprecatedBehavior =FALSE)
S
sum(S$par)
References
Thomas Philip Runarsson and Xin Yao, ``Search biases in constrained evolutionary optimization,'' IEEE Trans. on Systems, Man, and Cybernetics Part C: Applications and Reviews, vol. 35 (no. 2), pp. 233-243 (2005).