varmetric function

Shifted Limited-memory Variable-metric

Shifted Limited-memory Variable-metric

Shifted limited-memory variable-metric algorithm.

varmetric( x0, fn, gr = NULL, rank2 = TRUE, lower = NULL, upper = NULL, nl.info = FALSE, control = list(), ... )

Arguments

  • x0: initial point for searching the optimum.
  • fn: objective function to be minimized.
  • gr: gradient of function fn; will be calculated numerically if not specified.
  • rank2: logical; if true uses a rank-2 update method, else rank-1.
  • lower, upper: lower and upper bound constraints.
  • nl.info: logical; shall the original NLopt info been shown.
  • control: list of control parameters, see nl.opts for help.
  • ...: further arguments to be passed to the function.

Returns

List with components: - par: the optimal solution found so far.

  • value: the function value corresponding to par.

  • iter: number of (outer) iterations, see maxeval.

  • convergence: integer code indicating successful completion (> 0) or a possible error number (< 0).

  • message: character string produced by NLopt and giving additional information.

Details

Variable-metric methods are a variant of the quasi-Newton methods, especially adapted to large-scale unconstrained (or bound constrained) minimization.

Note

Based on L. Luksan's Fortran implementation of a shifted limited-memory variable-metric algorithm.

Examples

flb <- function(x) { p <- length(x) sum(c(1, rep(4, p-1)) * (x - c(1, x[-p])^2)^2) } # 25-dimensional box constrained: par[24] is *not* at the boundary S <- varmetric(rep(3, 25), flb, lower=rep(2, 25), upper=rep(4, 25), nl.info = TRUE, control = list(xtol_rel=1e-8)) ## Optimal value of objective function: 368.105912874334 ## Optimal value of controls: 2 ... 2 2.109093 4

References

J. Vlcek and L. Luksan, ``Shifted limited-memory variable metric methods for large-scale unconstrained minimization,'' J. Computational Appl. Math. 186, p. 365-390 (2006).

See Also

lbfgs

Author(s)

Hans W. Borchers