varmetric( x0, fn, gr =NULL, rank2 =TRUE, lower =NULL, upper =NULL, nl.info =FALSE, control = list(),...)
Arguments
x0: initial point for searching the optimum.
fn: objective function to be minimized.
gr: gradient of function fn; will be calculated numerically if not specified.
rank2: logical; if true uses a rank-2 update method, else rank-1.
lower, upper: lower and upper bound constraints.
nl.info: logical; shall the original NLopt info been shown.
control: list of control parameters, see nl.opts for help.
...: further arguments to be passed to the function.
Returns
List with components: - par: the optimal solution found so far.
value: the function value corresponding to par.
iter: number of (outer) iterations, see maxeval.
convergence: integer code indicating successful completion (> 0) or a possible error number (< 0).
message: character string produced by NLopt and giving additional information.
Details
Variable-metric methods are a variant of the quasi-Newton methods, especially adapted to large-scale unconstrained (or bound constrained) minimization.
Note
Based on L. Luksan's Fortran implementation of a shifted limited-memory variable-metric algorithm.
Examples
flb <-function(x){ p <- length(x) sum(c(1, rep(4, p-1))*(x - c(1, x[-p])^2)^2)}# 25-dimensional box constrained: par[24] is *not* at the boundaryS <- varmetric(rep(3,25), flb, lower=rep(2,25), upper=rep(4,25), nl.info =TRUE, control = list(xtol_rel=1e-8))## Optimal value of objective function: 368.105912874334## Optimal value of controls: 2 ... 2 2.109093 4
References
J. Vlcek and L. Luksan, ``Shifted limited-memory variable metric methods for large-scale unconstrained minimization,'' J. Computational Appl. Math. 186, p. 365-390 (2006).