Fit a Latent Change Score Model with a Time-invariant Covariate (If Any)
Fit a Latent Change Score Model with a Time-invariant Covariate (If Any)
This function fits a latent change score model with or without time-invariant covariates to the provided data. It manages model setup, optimization, and if requested, outputs parameter estimates and standard errors.
dat: A wide-format data frame, with each row corresponding to a unique ID. It contains the observed variables with repeated measurements and occasions, and time-invariant covariates (TICs) if any.
t_var: A string specifying the prefix of the column names corresponding to the time variable at each study wave.
y_var: A string specifying the prefix of the column names corresponding to the outcome variable at each study wave.
curveFun: A string specifying the functional form of the growth curve. Supported options for latent change score models include: "quadratic" (or "QUAD"), "negative exponential" (or "EXP"), "Jenss-Bayley"
(or "JB"), and "nonparametric" (or "NonP").
intrinsic: A logical flag indicating whether to build an intrinsically nonlinear longitudinal model. Default is TRUE.
records: A numeric vector specifying indices of the study waves.
growth_TIC: A string or character vector specifying the column name(s) of time-invariant covariate(s) contributing to the variability of growth factors if any. Default is NULL, indicating no growth TICs are included in the model.
starts: A list containing initial values for the parameters. Default is NULL, indicating no user-specified initial values.
res_scale: A numeric value representing the scaling factor for the initial calculation of the residual variance. This value should be between 0 and 1, exclusive. By default, this is NULL, as it is unnecessary when the user specifies the initial values using the starts argument.
tries: An integer specifying the number of additional optimization attempts. Default is NULL.
OKStatus: An integer (vector) specifying acceptable status codes for convergence. Default is 0.
jitterD: A string specifying the distribution for jitter. Supported values are: "runif" (uniform distribution), "rnorm" (normal distribution), and "rcauchy" (Cauchy distribution). Default is "runif".
loc: A numeric value representing the location parameter of the jitter distribution. Default is 1.
scale: A numeric value representing the scale parameter of the jitter distribution. Default is 0.25.
paramOut: A logical flag indicating whether to output the parameter estimates and standard errors. Default is FALSE.
names: A character vector specifying parameter names. Default is NULL.
Returns
An object of class myMxOutput. Depending on the paramOut argument, the object may contain the following slots:
mxOutput: This slot contains the fitted latent change score model. A summary of this model can be obtained using the ModelSummary() function.
Estimates (optional): If paramOut = TRUE, a data frame with parameter estimates and standard errors. The content of this slot can be printed using the printTable() method for S4 objects.
Examples
mxOption(model =NULL, key ="Default optimizer","CSOLNP", reset =FALSE)# Load ECLS-K (2011) datadata("RMS_dat")RMS_dat0 <- RMS_dat
# Re-baseline the data so that the estimated initial status is for the starting point of the studybaseT <- RMS_dat0$T1
RMS_dat0$T1 <-(RMS_dat0$T1 - baseT)/12RMS_dat0$T2 <-(RMS_dat0$T2 - baseT)/12RMS_dat0$T3 <-(RMS_dat0$T3 - baseT)/12RMS_dat0$T4 <-(RMS_dat0$T4 - baseT)/12RMS_dat0$T5 <-(RMS_dat0$T5 - baseT)/12RMS_dat0$T6 <-(RMS_dat0$T6 - baseT)/12RMS_dat0$T7 <-(RMS_dat0$T7 - baseT)/12RMS_dat0$T8 <-(RMS_dat0$T8 - baseT)/12RMS_dat0$T9 <-(RMS_dat0$T9 - baseT)/12# Standardized time-invariant covariatesRMS_dat0$ex1 <- scale(RMS_dat0$Approach_to_Learning)RMS_dat0$ex2 <- scale(RMS_dat0$Attention_focus)# Fit nonparametric change score model for reading development## Fit modelNonP_LCSM <- getLCSM( dat = RMS_dat0, t_var ="T", y_var ="R", curveFun ="nonparametric", intrinsic =FALSE, records =1:9, res_scale =0.1)
References
Liu, J., & Perera, R. A. (2023). Estimating Rate of Change for Nonlinear Trajectories in the Framework of Individual Measurement Occasions: A New Perspective on Growth Curves. Behavior Research Methods. tools:::Rd_expr_doi("10.3758/s13428-023-02097-2")
Liu, J. (2022). "Jenss–Bayley Latent Change Score Model With Individual Ratio of the Growth Acceleration in the Framework of Individual Measurement Occasions." Journal of Educational and Behavioral Statistics, 47(5), 507–543. tools:::Rd_expr_doi("10.3102/10769986221099919")
Grimm, K. J., Zhang, Z., Hamagami, F., & Mazzocco, M. (2013). "Modeling Nonlinear Change via Latent Change and Latent Acceleration Frameworks: Examining Velocity and Acceleration of Growth Trajectories." Multivariate Behavioral Research, 48(1), 117-143. tools:::Rd_expr_doi("10.1080/00273171.2012.755111")