Discrete kernel for categorical data with k unordered categories.
dkern(x, y, k, lambda)
Arguments
x: categorical data vector
y: postive integer defining a fixed category
k: positive integer giving the number of categories
lambda: smoothing parameter
Details
This kernel was introduced in Aitchison & Aitken (1976); see also Titterington (1980).
The setting lambda =1/k corresponds to the extreme case 'maximal smoothing', while lambda = 1 means no smoothing'. Statistically sensible settings are only 1/k$<=$ lambda $<=$1`.
References
Aitchison, J. and Aitken, C.G.G. (1976). Multivariate binary discrimination by kernel method. Biometrika 63, 413-420.
Titterington, D. M. (1980). A comparative study of kernel-based density estimates for categorical data. Technometrics, 22, 259-268.
Author(s)
Jochen Einbeck (2006)
Examples
k<-6;dkern(1:k,4,k,0.99)# Kernel centered at the 4th component with a very small amount of smoothing.## The function is currently defined asfunction(x,y,k,lambda){ifelse(y==x, lambda,(1-lambda)/(k-1))}