dkern function

Aitchison-Aitken kernel

Aitchison-Aitken kernel

Discrete kernel for categorical data with k unordered categories.

dkern(x, y, k, lambda)

Arguments

  • x: categorical data vector
  • y: postive integer defining a fixed category
  • k: positive integer giving the number of categories
  • lambda: smoothing parameter

Details

This kernel was introduced in Aitchison & Aitken (1976); see also Titterington (1980).

The setting lambda =1/k corresponds to the extreme case 'maximal smoothing', while lambda = 1 means no smoothing'. Statistically sensible settings are only 1/k$<=$ lambda $<=$1`.

References

Aitchison, J. and Aitken, C.G.G. (1976). Multivariate binary discrimination by kernel method. Biometrika 63, 413-420.

Titterington, D. M. (1980). A comparative study of kernel-based density estimates for categorical data. Technometrics, 22, 259-268.

Author(s)

Jochen Einbeck (2006)

Examples

k<-6; dkern(1:k,4,k,0.99) # Kernel centered at the 4th component with a very small amount of smoothing. ## The function is currently defined as function(x,y,k,lambda){ ifelse(y==x, lambda, (1-lambda)/(k-1)) }
  • Maintainer: Jochen Einbeck
  • License: GPL (>= 2)
  • Last published: 2018-08-31

Useful links