Parameters (3): ξ (location), α (scale), k (shape).
Range of x: −∞<x≤ξ+α/k if k>0; −∞<x<∞ if k=0; ξ+α/k≤x<∞ if k<0.
Probability density function:
f(x)=α2πeky−y2/2
where y=−k−1log{1−k(x−ξ)/α} if k=0, y=(x−ξ)/α if k=0.
Cumulative distribution function:
F(x)=Φ(x)
where Φ(x)=∫−∞xϕ(t)dt.
Quantile function: x(F) has no explicit analytical form.
k=0 is the Normal distribution with parameters ξ and alpha.
L-moments
L-moments are defined for all values of k.
λ1=ξ+α(1−ek2/2)/kλ2=α/kek2/2[1−2Φ(−k/2)]
There are no simple expressions for the L-moment ratios τr with r≥3. Here we use the rational-function approximation given in Hosking and Wallis (1997, p. 199).
Parameters
The shape parameter k is a function of τ3 alone. No explicit solution is possible. Here we use the approximation given in Hosking and Wallis (1997, p. 199).
Given k, the other parameters are given by
α=1−2Φ(−k/2)λ2ke−k2/2ξ=λ1−kα(1−ek2/2)
Lmom.lognorm and par.lognorm accept input as vectors of equal length. In f.lognorm, F.lognorm, invF.lognorm and rand.lognorm parameters (xi, alfa, k) must be atomic.
Returns
f.lognorm gives the density f, F.lognorm gives the distribution function F, invFlognorm gives the quantile function x, Lmom.lognorm gives the L-moments (λ1, λ2, τ3, τ4), par.lognorm gives the parameters (xi, alfa, k), and rand.lognorm generates random deviates.
Note
For information on the package and the Author, and for all the references, see nsRFA.