ols_msep function

MSEP

MSEP

Estimated error of prediction, assuming multivariate normality.

ols_msep(model)

Arguments

  • model: An object of class lm.

Returns

Estimated error of prediction of the model.

Details

Computes the estimated mean square error of prediction assuming that both independent and dependent variables are multivariate normal.

MSE(n+1)(n2)/n(np1) MSE(n + 1)(n - 2) / n(n - p - 1)

where MSE=SSE/(np)MSE = SSE / (n - p), n is the sample size and p is the number of predictors including the intercept

Examples

model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars) ols_msep(model)

References

Stein, C. (1960). “Multiple Regression.” In Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling, edited by I. Olkin, S. G. Ghurye, W. Hoeffding, W. G. Madow, and H. B. Mann, 264–305. Stanford, CA: Stanford University Press.

Darlington, R. B. (1968). “Multiple Regression in Psychological Research and Practice.” Psychological Bulletin 69:161–182.

See Also

Other model selection criteria: ols_aic(), ols_apc(), ols_fpe(), ols_hsp(), ols_mallows_cp(), ols_sbc(), ols_sbic()