Fits all regressions involving one regressor, two regressors, three regressors, and so on. It tests all possible subsets of the set of potential independent variables.
ols_step_all_possible(model,...)## Default S3 method:ols_step_all_possible(model, max_order =NULL,...)## S3 method for class 'ols_step_all_possible'plot(x, model =NA, print_plot =TRUE,...)
Arguments
model: An object of class lm.
...: Other arguments.
max_order: Maximum subset order.
x: An object of class ols_step_all_possible.
print_plot: logical; if TRUE, prints the plot else returns a plot object.
Returns
ols_step_all_possible returns an object of class "ols_step_all_possible". An object of class "ols_step_all_possible" is a data frame containing the following components:
mindex: model index
n: number of predictors
predictors: predictors in the model
rsquare: rsquare of the model
adjr: adjusted rsquare of the model
rmse: root mean squared error of the model
predrsq: predicted rsquare of the model
cp: mallow's Cp
aic: akaike information criteria
sbic: sawa bayesian information criteria
sbc: schwarz bayes information criteria
msep: estimated MSE of prediction, assuming multivariate normality
fpe: final prediction error
apc: amemiya prediction criteria
hsp: hocking's Sp
Examples
model <- lm(mpg ~ disp + hp, data = mtcars)k <- ols_step_all_possible(model)k
# plotplot(k)# maximum subsetmodel <- lm(mpg ~ disp + hp + drat + wt + qsec, data = mtcars)ols_step_all_possible(model, max_order =3)
References
Mendenhall William and Sinsich Terry, 2012, A Second Course in Statistics Regression Analysis (7th edition). Prentice Hall