Test for heteroskedasticity under the assumption that the errors are independent and identically distributed (i.i.d.).
ols_test_f(model, fitted_values =TRUE, rhs =FALSE, vars =NULL,...)
Arguments
model: An object of class lm.
fitted_values: Logical; if TRUE, use fitted values of regression model.
rhs: Logical; if TRUE, specifies that tests for heteroskedasticity be performed for the right-hand-side (explanatory) variables of the fitted regression model.
vars: Variables to be used for for heteroskedasticity test.
...: Other arguments.
Returns
ols_test_f returns an object of class "ols_test_f". An object of class "ols_test_f" is a list containing the following components:
f: f statistic
p: p-value of f
fv: fitted values of the regression model
rhs: names of explanatory variables of fitted regression model
numdf: numerator degrees of freedom
dendf: denominator degrees of freedom
vars: variables to be used for heteroskedasticity test
resp: response variable
preds: predictors
Examples
# modelmodel <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)# using fitted valuesols_test_f(model)# using all predictors of the modelols_test_f(model, rhs =TRUE)# using fitted valuesols_test_f(model, vars = c('disp','hp'))
References
Wooldridge, J. M. 2013. Introductory Econometrics: A Modern Approach. 5th ed. Mason, OH: South-Western.
See Also
Other heteroskedasticity tests: ols_test_bartlett(), ols_test_breusch_pagan(), ols_test_score()