optiscale-package

Optimal Scaling of a Data Vector

Optimal Scaling of a Data Vector

This package provides tools to perform an optimal scaling analysis on a data vector. The main result of the optimal scaling is a vector of scores which are a least-squares approximation to a vector of quantitative values, subject to measurement constraints based upon a vector of qualitative data values. See Young (1981) for details. package

Details

Package:optiscale
Type:Package
Version:1.2.2
Date:2021-02-02
License:GPL-2
LazyLoad:yes

The function that performs the optimal scaling is opscale(). It produces an object of class "opscale". Generic methods are defined for print, summary, and plot (graphing optimally-scaled values versus original data values).

Author(s)

William G. Jacoby

Maintainer: William G. Jacoby <wm.g.jacoby@gmail.com >

References

Young, Forrest W. (1981) Quantitative Analysis of Qualitative Data. Psychometrika 46: 357-388.

See Also

opscale,plot.opscale, print.opscale, summary.opscale

Examples

### x1 is vector of qualitative data ### x2 is vector of quantitative values x1 <- c(1,1,1,1,2,2,2,3,3,3,3,3,3) x2 <- c(3,2,2,2,1,2,3,4,5,2,6,6,4) ### Optimal scaling, specifying that x1 ### is ordinal-discrete op.scaled <- opscale(x.qual=x1, x.quant=x2, level=2, process=1) print(op.scaled) summary(op.scaled)
  • Maintainer: Dave Armstrong
  • License: GPL-2
  • Last published: 2024-05-16

Useful links