The top k productive, non-redundant itemsets, with relevant statistics, in the form of a data frame, object of class itemsets (arules), or a list.
Details
opus provides an interface to the OPUS Miner algorithm (implemented in C++) to find the top k productive, non-redundant itemsets by leverage (default) or lift.
transactions should be a filename, list (of transactions, each list element being a vector of character values representing item labels), or an object of class transactions (arules).
Files should be in the format of a list of transactions, one line per transaction, each transaction (ie, line) being a sequence of item labels, separated by the character specified by the parameter sep (default " "). See, for example, the files at http://fimi.ua.ac.be/data/. (Alternatively, files can be read seaparately using the read_transactions function.)
format should be specified as either "data.frame" (the default) or "itemsets", and any other value will return a list.
Examples
## Not run:result <- opus("mushroom.dat")result <- opus("mushroom.dat", k =50)result[result$self_sufficient,]result[order(result$count, decreasing =TRUE),]trans <- read_transactions("mushroom.dat", format ="transactions")result <- opus(trans, print_closures =TRUE)result <- opus(trans, format ="itemsets")## End(Not run)
References
Webb, G. I., & Vreeken, J. (2014). Efficient Discovery of the Most Interesting Associations. ACM Transactions on Knowledge Discovery from Data, 8(3), 1-15. doi: http://dx.doi.org/10.1145/2601433