GetLabels Calculates the start and end positions of each window that are focused on the real anomalies. This windows can be used to know if the detected anomaly is a true positive or not.
GetLabels(data)
Arguments
data: All dataset with training and test datasets with at least timestamp, value, is.anomaly, is.real.anomaly, start.limit and end.limit columns.
Returns
Same data set with two additional columns label and first.tp. first.tp indicates for each window Which is the position of first true positive. label indicates for each detection if it is a TP, FP, TN or FN.
Details
data must be a data.frame with timestamp, value, is.anomaly
and is.real.anomaly columns. timestamp column can be numeric, of type POSIXct, or a character type date convertible to POSIXct. see GetWindowsLimits to know more about how to get start.limit and end.limit columns.
Examples
## Generate dataset.seed(100)n <-180x <- sample(1:100, n, replace =TRUE)x[70:90]<- sample(110:115,21, replace =TRUE)x[25]<-200x[150]<-170df <- data.frame(timestamp =1:n, value = x)# Add is.real.anomaly columndf$is.real.anomaly <-0df[c(25,80,150),"is.real.anomaly"]<-1## Calculate anomaliesresult <- CpSdEwma( data = df$value, n.train =5, threshold =0.01, l =3)res <- cbind(df, result)# Get Window Limitsdata <- GetWindowsLimits(res)data[data$is.real.anomaly ==1,]# Get labelsdata <- GetLabels(data)data[data$is.real.anomaly ==1| data$is.anomaly ==1,]# Plot resultsPlotDetections(res, print.real.anomaly =TRUE, print.time.window =TRUE)
References
A. Lavin and S. Ahmad, “Evaluating Real-time Anomaly Detection Algorithms – the Numenta Anomaly Benchmark,” in 14th International Conference on Machine Learning and Applications (IEEE ICMLA’15), 2015.