NormalizeScore function

Normalize Score using Max and Min normalization

Normalize Score using Max and Min normalization

ReduceAnomalies It reduces the number of detected anomalies. This function is designed to reduce the number of false positives keeping only the first detection of all those that are close to each other. This proximity distance is defined by a window

NormalizeScore(real.score, perfect.score, null.score)

Arguments

  • real.score: Detector score. See GetDetectorScore.
  • perfect.score: Perfect detector score; one that outputs all true positives and no false positives. See GetNullAndPerfectScores.
  • null.score: Perfect detector score; one that outputs all true positives and no false positives. See GetNullAndPerfectScores.

Returns

Normalized score.

Examples

## Generate data set.seed(100) n <- 180 x <- sample(1:100, n, replace = TRUE) x[70:90] <- sample(110:115, 21, replace = TRUE) x[25] <- 200 x[150] <- 170 df <- data.frame(timestamp = 1:n, value = x) # Add is.real.anomaly column df$is.real.anomaly <- 0 df[c(25,80,150), "is.real.anomaly"] <- 1 ## Calculate anomalies result <- CpSdEwma( data = df$value, n.train = 5, threshold = 0.01, l = 3 ) res <- cbind(df, result) # Get null and perfect scores np.scores <- GetNullAndPerfectScores(df) np.standard <- np.scores[1,] np.fp <- np.scores[2,] np.fn <- np.scores[3,] # Get detector score scores <- GetDetectorScore(res, print = FALSE, title = "") # Normalize standard score NormalizeScore(scores$standard, np.standard$perfect.score, np.standard$null.score) # Normalize low_FP_rate score NormalizeScore(scores$low_FP_rate, np.fp$perfect.score, np.fp$null.score) # Normalize low_FN_rate score NormalizeScore(scores$low_FN_rate, np.fn$perfect.score, np.fn$null.score)

References

A. Lavin and S. Ahmad, “Evaluating Real-time Anomaly Detection Algorithms – the Numenta Anomaly Benchmark,” in 14th International Conference on Machine Learning and Applications (IEEE ICMLA’15), 2015.

  • Maintainer: Alaiñe Iturria
  • License: AGPL (>= 3)
  • Last published: 2019-09-06