ReduceAnomalies function

Reduce Anomalies

Reduce Anomalies

ReduceAnomalies It reduces the number of detected anomalies. This function is designed to reduce the number of false positives keeping only the first detection of all those that are close to each other. This proximity distance is defined by a window

ReduceAnomalies(data, windowLength, incremental = FALSE, last.res = NULL)

Arguments

  • data: Numerical vector with anomaly labels.
  • windowLength: Window length.
  • incremental: TRUE for incremental processing and FALSE for classic processing
  • last.res: Last result returned by the algorithm.

Returns

If incremental = FALSE, new Numerical vector with reduced anomaly labels. Else, a list of the following items. - result: New Numerical vector with reduced anomaly labels.

  • last.res: Last result returned by the algorithm. It is a list with pointer, the index of the last anomaly and index, the index number of the last point in the data

Examples

## EXAMPLE 1: Classic Processing ---------------------- ## Generate data set.seed(100) n <- 350 x <- sample(1:100, n, replace = TRUE) x[70:90] <- sample(110:115, 21, replace = TRUE) x[25] <- 200 x[320] <- 170 df <- data.frame(timestamp = 1:n, value = x) ## Calculate anomalies result <- IpSdEwma( data = df$value, n.train = 5, threshold = 0.01, l = 2 ) res <- cbind(df, result$result) ## Plot results PlotDetections(res, title = "SD-EWMA ANOMALY DETECTOR") ## Reduce anomalies res$is.anomaly <- ReduceAnomalies(res$is.anomaly, windowLength = 5) ## Plot results PlotDetections(res, title = "SD-EWMA ANOMALY DETECTOR") ## EXAMPLE 2: Incremental Processing ---------------------- # install.packages("stream") library("stream") # Generate data set.seed(100) n <- 350 x <- sample(1:100, n, replace = TRUE) x[70:90] <- sample(110:115, 21, replace = TRUE) x[25] <- 200 x[320] <- 170 df <- data.frame(timestamp = 1:n, value = x) dsd_df <- DSD_Memory(df) # Initialize parameters for the loop last.res <- NULL red.res <- NULL res <- NULL nread <- 100 numIter <- ceiling(n/nread) # Calculate anomalies for(i in 1:numIter) { # read new data newRow <- get_points(dsd_df, n = nread, outofpoints = "ignore") # calculate if it's an anomaly last.res <- IpSdEwma( data = newRow$value, n.train = 5, threshold = 0.01, l = 2, last.res = last.res$last.res ) if(!is.null(last.res$result)){ # reduce anomalies red.res <- ReduceAnomalies(last.res$result$is.anomaly, windowLength = 5, incremental = TRUE, last.res = red.res$last.res) last.res$result$is.anomaly <- red.res$result # prepare the result res <- rbind(res, cbind(newRow, last.res$result)) } } # Plot results PlotDetections(res, title = "SD-EWMA ANOMALY DETECTOR")
  • Maintainer: Alaiñe Iturria
  • License: AGPL (>= 3)
  • Last published: 2019-09-06