c_marginal_probabilities function

Computes the cumulative marginal probabilities of an ordinal time series

Computes the cumulative marginal probabilities of an ordinal time series

c_marginal_probabilities returns a vector with the cumulative marginal probabilities of an ordinal time series UTF-8

c_marginal_probabilities(series, states)

Arguments

  • series: An OTS (numerical vector with integers).
  • states: A numerical vector containing the corresponding states.

Returns

A vector with the cumulative marginal probabilities.

Details

Given an OTS of length TT with range S={s0,s1,s2,,sn}\mathcal{S}=\{s_0, s_1, s_2, \ldots, s_n\} (s0<s1<s2<<sns_0 < s_1 < s_2 < \ldots < s_n), Xt={X1,,XT}\overline{X}_t=\{\overline{X}_1,\ldots, \overline{X}_T\}, the function computes the vector f^=(f^0,,f^n)\widehat{\boldsymbol f} =(\widehat{f}_0, \ldots, \widehat{f}_n), with f^i=NiT\widehat{f}_i=\frac{N_i}{T}, where NiN_i is the number of elements less than or equal to sis_i in the realization Xt\overline{X}_t.

Examples

vector_cmp <- c_marginal_probabilities(series = AustrianWages$data[[100]], states = 0 : 5) # Computing the vector of # cumulative marginal probabilities for one series in dataset AustrianWages

References

Rdpack::insert_ref(key="weiss2019distance",package="otsfeatures")

Author(s)

Ángel López-Oriona, José A. Vilar

  • Maintainer: Angel Lopez-Oriona
  • License: GPL-2
  • Last published: 2023-03-01

Useful links