conditional_probabilities function

Computes the conditional probabilities of an ordinal time series

Computes the conditional probabilities of an ordinal time series

conditional_probabilities returns a matrix with the conditional probabilities of an ordinal time series UTF-8

conditional_probabilities(series, lag = 1, states)

Arguments

  • series: An OTS.
  • lag: The considered lag (default is 1).
  • states: A numerical vector containing the corresponding states.

Returns

A matrix with the conditional probabilities.

Details

Given an OTS of length TT with range S={s0,s1,s2,,sn}\mathcal{S}=\{s_0, s_1, s_2, \ldots, s_n\} (s0<s1<s2<<sns_0 < s_1 < s_2 < \ldots < s_n), Xt={X1,,XT}\overline{X}_t=\{\overline{X}_1,\ldots, \overline{X}_T\}, the function computes the matrix P^c(l)=(p^i1j1c(l))1i,jn+1\widehat{\boldsymbol P}^c(l) = \big(\widehat{p}^c_{i-1j-1}(l)\big)_{1 \le i, j \le n+1}, with p^ijc(l)=TNij(l)(Tl)Ni\widehat{p}^c_{ij}(l)=\frac{TN_{ij}(l)}{(T-l)N_i}, where NiN_i is the number of elements equal to sis_i in the realization Xt\overline{X}_t and Nij(l)N_{ij}(l) is the number of pairs (Xt,Xtl)=(si,sj)(\overline{X}_t, \overline{X}_{t-l})=(s_i,s_j) in the realization Xt\overline{X}_t.

Examples

matrix_cp <- conditional_probabilities(series = AustrianWages$data[[100]], states = 0 : 5) # Computing the matrix of # conditional probabilities for one series in dataset AustrianWages

References

Rdpack::insert_ref(key="weiss2019distance",package="otsfeatures")

Author(s)

Ángel López-Oriona, José A. Vilar

  • Maintainer: Angel Lopez-Oriona
  • License: GPL-2
  • Last published: 2023-03-01

Useful links