marginal_probabilities function

Computes the marginal probabilities of an ordinal time series

Computes the marginal probabilities of an ordinal time series

marginal_probabilities returns a vector with the marginal probabilities of an ordinal time series UTF-8

marginal_probabilities(series, states)

Arguments

  • series: An OTS (numerical vector with integers).
  • states: A numerical vector containing the corresponding states

Returns

A vector with the marginal probabilities.

Details

Given an OTS of length TT with range S={s0,s1,s2,,sn}\mathcal{S}=\{s_0, s_1, s_2, \ldots, s_n\} (s0<s1<s2<<sns_0 < s_1 < s_2 < \ldots < s_n), Xt={X1,,XT}\overline{X}_t=\{\overline{X}_1,\ldots, \overline{X}_T\}, the function computes the vector p^=(p^0,,p^n)\widehat{\boldsymbol p} =(\widehat{p}_0, \ldots, \widehat{p}_n), with p^i=NiT\widehat{p}_i=\frac{N_i}{T}, where NiN_i is the number of elements equal to sis_i in the realization Xt\overline{X}_t.

Examples

vector_mp <- marginal_probabilities(series = AustrianWages$data[[100]], states = 0 : 5) # Computing the vector of # marginal probabilities for one series in dataset AustrianWages

References

Rdpack::insert_ref(key="weiss2019distance",package="otsfeatures")

Author(s)

Ángel López-Oriona, José A. Vilar

  • Maintainer: Angel Lopez-Oriona
  • License: GPL-2
  • Last published: 2023-03-01

Useful links