ordinal_skewness function

Computes the estimated skewness of an ordinal time series

Computes the estimated skewness of an ordinal time series

ordinal_skewness computes the estimated skewness of an ordinal time series UTF-8

ordinal_skewness(series, states, distance = "Block", normalize = FALSE)

Arguments

  • series: An OTS.
  • states: A numerical vector containing the corresponding states.
  • distance: A function defining the underlying distance between states. The Hamming, block and Euclidean distances are already implemented by means of the arguments "Hamming", "Block" (default) and "Euclidean". Otherwise, a function taking as input two states must be provided.
  • normalize: Logical. If normalize = FALSE (default), the value of the estimated skewness is returned. Otherwise, the function returns the normalized estimated skewness.

Returns

The estimated skewness.

Details

Given an OTS of length TT with range S={s0,s1,s2,,sn}\mathcal{S}=\{s_0, s_1, s_2, \ldots, s_n\} (s0<s1<s2<<sns_0 < s_1 < s_2 < \ldots < s_n), Xt={X1,,XT}\overline{X}_t=\{\overline{X}_1,\ldots, \overline{X}_T\}, the function computes the estimated skewness given by skew^d=i=0n(d(si,sn)d(si,s0))p^i\widehat{skew}_{d}=\sum_{i=0}^n\big(d(s_i,s_n)-d(s_i,s_0)\big)\widehat{p}_i, where d(,)d(\cdot, \cdot) is a distance between ordinal states and p^k\widehat{p}_k is the standard estimate of the marginal probability for state sks_k computed from the realization Xt\overline{X}_t.

Examples

estimated_skewness <- ordinal_skewness(series = AustrianWages$data[[100]], states = 0 : 5) # Computing the skewness estimate # for one series in dataset AustrianWages using the block distance

References

Rdpack::insert_ref(key="weiss2019distance",package="otsfeatures")

Author(s)

Ángel López-Oriona, José A. Vilar

  • Maintainer: Angel Lopez-Oriona
  • License: GPL-2
  • Last published: 2023-03-01

Useful links