total_mixed_c_correlation_2 function

Computes the total mixed cumulative quantile correlation (TMCQC) between an ordinal and a real-valued time series

Computes the total mixed cumulative quantile correlation (TMCQC) between an ordinal and a real-valued time series

total_mixed_c_correlation_2 returns the TMCQC between an ordinal and a real-valued time series UTF-8

total_mixed_c_correlation_2( o_series, n_series, lag = 1, states, features = FALSE )

Arguments

  • o_series: An OTS.
  • n_series: A real-valued time series.
  • lag: The considered lag (default is 1).
  • states: A numerical vector containing the corresponding states.
  • features: Logical. If features = FALSE (default), the value of the TMCLC is returned. Otherwise, the function returns a vector with the individual components of the TMCQC.

Returns

If features = FALSE (default), returns the value of the TMCQC. Otherwise, the function returns a vector of features, i.e., the vector contains the features employed to compute the TMCLC.

Details

Given a OTS of length TT with range S={s0,s1,,sn}\mathcal{S}=\{s_0, s_1, \ldots, s_n\}, Xt={X1,,XT}\overline{X}_t=\{\overline{X}_1,\ldots, \overline{X}_T\}, and the cumulative binarized time series, which is defined as Yt={Y1,,YT}\overline{\boldsymbol Y}_t=\{\overline{\boldsymbol Y}_1, \ldots, \overline{\boldsymbol Y}_T\}, with Yk=(Yk,0,,Yk,n1)\overline{\boldsymbol Y}_k=(\overline{Y}_{k,0}, \ldots, \overline{Y}_{k,n-1})^\top

such that Yk,i=1\overline{Y}_{k,i}=1 if Xksi\overline{X}_k \leq s_i (c("k=1,ldots,T\nk=1,\\ldots,T\n", ",i=0,ldots,n1, i=0,\\ldots,n-1")), the function computes the estimated TMCQC given by

Ψ^2m(l)=1ni=0n101ψ^iρ(l)2dρ, \widehat{\Psi}_2^m(l)=\frac{1}{n}\sum_{i=0}^{n-1}\int_{0}^{1}\widehat{\psi}^\rho_{i}(l)^2d\rho,

where ψ^iρ(l)=Corr^(Yt,i,I(ZtlqZt(ρ)))\widehat{\psi}_{i}^\rho(l)=\widehat{Corr}\big(Y_{t,i}, I(Z_{t-l}\leq q_{Z_t}(\rho)) \big), with Zt={Z1,,ZT}\overline{Z}_t=\{\overline{Z}_1,\ldots, \overline{Z}_T\} being a TT-length real-valued time series, ρ(0,1)\rho \in (0, 1) a probability level, I()I(\cdot) the indicator function and qZtq_{Z_t} the quantile function of the corresponding real-valued process. If features = TRUE, the function returns a vector whose components are the quantities 01ψ^iρ(l)2dρ\int_{0}^{1}\widehat{\psi}^\rho_{i}(l)^2d\rho, i=0,1,,n1i=0,1, \ldots,n-1.

Examples

tmclc <- total_mixed_c_correlation_2(o_series = SyntheticData1$data[[1]], n_series = rnorm(600), states = 0 : 5) # Computing the TMCQC # between the first series in dataset SyntheticData1 and white noise feature_vector <- total_mixed_c_correlation_2(o_series = SyntheticData1$data[[1]], n_series = rnorm(600), states = 0 : 5, features = TRUE) # Computing the corresponding # vector of features

Author(s)

Ángel López-Oriona, José A. Vilar

  • Maintainer: Angel Lopez-Oriona
  • License: GPL-2
  • Last published: 2023-03-01

Useful links