run_on_matched function

Runs pKSEA analysis on a dataset result from get_matched_data.

Runs pKSEA analysis on a dataset result from get_matched_data.

Calculates score contributions from summary statistics (tscore) and prediction scores, and sums contribution scores by kinase to calculate raw kinase activity change scores (KAC scores). Performs permutation test on summary statistic data to assess significance of kinase activity change scores, and reports significance as a percentile score (pKSEA significance score).

run_on_matched(matched_data, n_permutations = 1000, seed = 123, kin_ens_table = NULL)

Arguments

  • matched_data: data after filtering against predictions (results from get_matched_data())
  • n_permutations: number of mutations to perform (default 1000)
  • seed: seed used for permutation testing
  • kin_ens_table: optional table for inclusion of matched ensembl ids for kinases, with columns: ens = ensembl id, kinases = kinase_id as otherwise used

Examples

#Read in example summary statistics dataset from csv summarydata_ex <- read.csv(system.file("extdata", "example_data1.csv", package="pKSEA")) #Get matched data using predictions from NetworKIN matched_data_ex <- get_matched_data(summarydata_ex, NetworKINPred_db) #Perform single run of pKSEA analysis single_run_results_ex <- run_on_matched(matched_data_ex, n_permutations = 10)
  • Maintainer: Peter Liao
  • License: MIT + file LICENSE
  • Last published: 2017-12-22

Useful links