bootstrap_irf function

Empirical estimation of PVAR Impulse Response Confidence Bands

Empirical estimation of PVAR Impulse Response Confidence Bands

Uses blockwise sampling of individuals (bootstrapping).

bootstrap_irf( model, typeof_irf, n.ahead, nof_Nstar_draws, confidence.band, mc.cores ) ## S3 method for class 'pvargmm' bootstrap_irf( model, typeof_irf = c("OIRF", "GIRF"), n.ahead, nof_Nstar_draws, confidence.band = 0.95, mc.cores = getOption("mc.cores", 2L) ) ## S3 method for class 'pvarfeols' bootstrap_irf( model, typeof_irf = c("OIRF", "GIRF"), n.ahead, nof_Nstar_draws, confidence.band = 0.95, mc.cores = getOption("mc.cores", 2L) )

Arguments

  • model: A PVAR model
  • typeof_irf: "OIRF" or GIRF
  • n.ahead: n ahead steps
  • nof_Nstar_draws: Number of draws
  • confidence.band: Confidence band
  • mc.cores: Number of cores to use

Examples

## Not run: data("ex1_dahlberg_data") ex1_dahlberg_data_bs <- bootstrap_irf(ex1_dahlberg_data, typeof_irf = c("GIRF"), n.ahead = 8, nof_Nstar_draws = 500, confidence.band = 0.95, mc.cores = 100) ## End(Not run) data("ex1_dahlberg_data") ex1_dahlberg_data_girf <- girf(ex1_dahlberg_data, n.ahead = 8, ma_approx_steps= 8) data("ex1_dahlberg_data_bs") plot(ex1_dahlberg_data_girf, ex1_dahlberg_data_bs)
  • Maintainer: Robert Ferstl
  • License: GPL (>= 2)
  • Last published: 2024-11-25

Useful links