pvargmm function

GMM Estimation of Panel VAR Models

GMM Estimation of Panel VAR Models

Estimates a panel vector autoregressive (PVAR) model with fixed effects.

pvargmm( dependent_vars, lags, predet_vars, exog_vars, transformation = "fd", data, panel_identifier = c(1, 2), steps, system_instruments = FALSE, system_constant = TRUE, pca_instruments = FALSE, pca_eigenvalue = 1, max_instr_dependent_vars, max_instr_predet_vars, min_instr_dependent_vars = 2L, min_instr_predet_vars = 1L, collapse = FALSE, tol = 1e-09, progressbar = TRUE )

Arguments

  • dependent_vars: Dependent variables
  • lags: Number of lags of dependent variables
  • predet_vars: Predetermined variables
  • exog_vars: Exogenous variables
  • transformation: First-difference "fd" or forward orthogonal deviations "fod"
  • data: Data set
  • panel_identifier: Vector of panel identifiers
  • steps: "onestep", "twostep" or "mstep" estimation
  • system_instruments: System GMM estimator
  • system_constant: Constant only available with the System GMM estimator in each equation
  • pca_instruments: Apply PCA to instruments matrix
  • pca_eigenvalue: Cut-off eigenvalue for PCA analysis
  • max_instr_dependent_vars: Maximum number of instruments for dependent variables
  • max_instr_predet_vars: Maximum number of instruments for predetermined variables
  • min_instr_dependent_vars: Minimum number of instruments for dependent variables
  • min_instr_predet_vars: Minimum number of instruments for predetermined variables
  • collapse: Use collapse option
  • tol: relative tolerance to detect zero singular values in "ginv"
  • progressbar: show progress bar

Returns

A pvargmm object containing the estimation results.

Details

The first vector autoregressive panel model (PVAR) was introduced by Holtz-Eakin et al. (1988). Binder et al. (2005) extend their equation-by-equation estimator for a PVAR model with only endogenous variables that are lagged by one period. We further improve this model in Sigmund and Ferstl (2021) to allow for pp lags of mm endogenous variables, kk predetermined variables and nn strictly exogenous variables.

Therefore, we consider the following stationary PVAR with fixed effects.

A PVAR model is hence a combination of a single equation dynamic panel model (DPM) and a vector autoregressive model (VAR).

First difference and system GMM estimators for single equation dynamic panel data models have been implemented in the STATA package xtabond2 by Roodman (2009) and some of the features are also available in the R package plm.

For more technical details on the estimation, please refer to our paper Sigmund and Ferstl (2021).

There we define the first difference moment conditions (see Holtz-Eakin et al., 1988; Arellano and Bond, 1991), formalize the ideas to reduce the number of moment conditions by linear transformations of the instrument matrix and define the one- and two-step GMM estimator. Furthermore, we setup the system moment conditions as defined in Blundell and Bond (1998) and present the extended GMM estimator. In addition to the GMM-estimators we contribute to the literature by providing specification tests (Hansen overidentification test, lag selection criterion and stability test of the PVAR polynomial) and classical structural analysis for PVAR models such as orthogonal and generalized impulse response functions, bootstrapped confidence intervals for impulse response analysis and forecast error variance decompositions. Finally, we implement the first difference and the forward orthogonal transformation to remove the fixed effects.

Examples

## Not run: library(panelvar) data(abdata) ex3_abdata <-pvargmm( dependent_vars = c("emp"), lags = 4, predet_vars = c("wage"), exog_vars = c("cap"), transformation = "fd", data = abdata, panel_identifier = c("id", "year"), steps = c("twostep"), system_instruments = TRUE, max_instr_dependent_vars = 99, max_instr_predet_vars = 99, min_instr_dependent_vars = 2L, min_instr_predet_vars = 1L, collapse = FALSE ) ## End(Not run) data("ex3_abdata") summary(ex3_abdata) data("Dahlberg") ## Not run: ex1_dahlberg_data <- pvargmm(dependent_vars = c("expenditures", "revenues", "grants"), lags = 1, transformation = "fod", data = Dahlberg, panel_identifier=c("id", "year"), steps = c("twostep"), system_instruments = FALSE, max_instr_dependent_vars = 99, max_instr_predet_vars = 99, min_instr_dependent_vars = 2L, min_instr_predet_vars = 1L, collapse = FALSE ) ## End(Not run) data("ex1_dahlberg_data") summary(ex1_dahlberg_data)

References

Arellano, M., Bond, S. (1991) Some Tests of Specification for Panel Sata: Monte Carlo Evidence and an Application to Employment Equations The Review of Economic Studies, 58 (2), 277--297, tools:::Rd_expr_doi("10.2307/2297968")

Binder M., Hsiao C., Pesaran M.H. (2005) Estimation and Inference in Short Panel Vector Autoregressions with Unit Roots and Cointegration Econometric Theory, 21 (4), 795--837, tools:::Rd_expr_doi("10.1017/S0266466605050413")

Blundell R., Bond S. (1998). Initial Conditions and Moment Restrictions in Dynamic Panel Data Models Journal of Econometrics, 87 (1), 115--143, tools:::Rd_expr_doi("10.1016/S0304-4076(98)00009-8")

Holtz-Eakin D., Newey W., Rosen H.S. (1988) Estimating Vector Autoregressions with Panel Data, Econometrica, 56 (6), 1371--1395, tools:::Rd_expr_doi("10.2307/1913103")

Roodman, D. (2009) How to Do xtabond2: An Introduction to Difference and System GMM in Stata The Stata Journal, 9 (1), 86--136, https://www.stata-journal.com/article.html?article=st0159

Sigmund, M., Ferstl, R. (2021) Panel Vector Autoregression in R with the Package panelvar The Quarterly Review of Economics and Finance tools:::Rd_expr_doi("10.1016/j.qref.2019.01.001")

See Also

stability for stability tests

oirf and girf for orthogonal and generalized impulse response functions (including bootstrapped confidence intervals)

coef.pvargmm, se, pvalue, fixedeffects for extrator functions for the most important results

fevd_orthogonal for forecast error variance decomposition

  • Maintainer: Robert Ferstl
  • License: GPL (>= 2)
  • Last published: 2024-11-25

Useful links