parameters0.28.2 package

Processing of Model Parameters

format_parameters

Parameter names formatting

p_significance.lm

Practical Significance (ps)

reshape_loadings

Reshape loadings between wide/long formats

select_parameters

Automated selection of model parameters

simulate_model

Simulated draws from model coefficients

simulate_parameters

Simulate Model Parameters

sort_parameters

Sort parameters by coefficient values

standard_error

Standard Errors

standardize_info

Get Standardization Information

standardize_parameters

Parameters standardization

model_parameters.principal

Parameters from PCA, FA, CFA, SEM

p_function

p-value or consonance function

cluster_meta

Metaclustering

cluster_performance

Performance of clustering models

compare_parameters

Compare model parameters of multiple models

format_df_adjust

Format the name of the degrees-of-freedom adjustment methods

format_order

Order (first, second, ...) formatting

format_p_adjust

Format the name of the p-value adjustment methods

bootstrap_model

Model bootstrapping

bootstrap_parameters

Parameters bootstrapping

ci.default

Confidence Intervals (CI)

cluster_analysis

Cluster Analysis

cluster_centers

Find the cluster centers in your data

cluster_discrimination

Compute a linear discriminant analysis on classified cluster groups

convert_efa_to_cfa

Conversion between EFA results and CFA structure

degrees_of_freedom

Degrees of Freedom (DoF)

display.parameters_model

Print tables in different output formats

dominance_analysis

Dominance Analysis

dot-data_frame

help-functions

dot-factor_to_dummy

Safe transformation from factor/character to numeric

dot-filter_component

for models with zero-inflation component, return required component of...

dot-n_factors_bartlett

Bartlett, Anderson and Lawley Procedures

dot-n_factors_bentler

Bentler and Yuan's Procedure

dot-n_factors_cng

Cattell-Nelson-Gorsuch CNG Indices

dot-n_factors_mreg

Multiple Regression Procedure

dot-n_factors_scree

Non Graphical Cattell's Scree Test

dot-n_factors_sescree

Standard Error Scree and Coefficient of Determination Procedures

equivalence_test.lm

Equivalence test

factor_scores

Extract factor scores from Factor Analysis (EFA) or Omega

model_parameters.mira

Parameters from multiply imputed repeated analyses

model_parameters.mlm

Parameters from multinomial or cumulative link models

get_scores

Get Scores from Principal Component or Factor Analysis (PCA/FA)

model_parameters.aov

Parameters from ANOVAs

model_parameters.befa

Parameters from Bayesian Exploratory Factor Analysis

model_parameters.BFBayesFactor

Parameters from BayesFactor objects

model_parameters.brmsfit

Parameters from Bayesian Models

model_parameters.cgam

Parameters from Generalized Additive (Mixed) Models

model_parameters.compare.loo

Bayesian Model Comparison

model_parameters.default

Parameters from (General) Linear Models

model_parameters.glht

Parameters from Hypothesis Testing

model_parameters.glimML

Parameters from special models

model_parameters.glmmTMB

Parameters from Mixed Models

model_parameters.hclust

Parameters from Cluster Models (k-means, ...)

model_parameters.htest

Parameters from hypothesis tests

model_parameters

Model Parameters

model_parameters.rma

Parameters from Meta-Analysis

model_parameters.t1way

Parameters from robust statistical objects in WRS2

model_parameters.zcpglm

Parameters from Zero-Inflated Models

n_clusters

Find number of clusters in your data

n_factors

Number of components/factors to retain in PCA/FA

p_calibrate

Calculate calibrated p-values.

p_direction.lm

Probability of Direction (pd)

p_value_betwithin

Between-within approximation for SEs, CIs and p-values

p_value_kenward

Kenward-Roger approximation for SEs, CIs and p-values

p_value_ml1

"m-l-1" approximation for SEs, CIs and p-values

p_value_satterthwaite

Satterthwaite approximation for SEs, CIs and p-values

p_value

p-values

parameters_type

Type of model parameters

parameters-options

Global options from the parameters package

parameters-package

parameters: Extracting, Computing and Exploring the Parameters of Stat...

pool_parameters

Pool Model Parameters

predict.parameters_clusters

Predict method for parameters_clusters objects

principal_components

Principal Component Analysis (PCA) and Factor Analysis (FA)

print.compare_parameters

Print comparisons of model parameters

print.parameters_model

Print model parameters

random_parameters

Summary information from random effects

reduce_parameters

Dimensionality reduction (DR) / Features Reduction

reexports

Objects exported from other packages

Utilities for processing the parameters of various statistical models. Beyond computing p values, CIs, and other indices for a wide variety of models (see list of supported models using the function 'insight::supported_models()'), this package implements features like bootstrapping or simulating of parameters and models, feature reduction (feature extraction and variable selection) as well as functions to describe data and variable characteristics (e.g. skewness, kurtosis, smoothness or distribution).

  • Maintainer: Daniel Lüdecke
  • License: GPL-3
  • Last published: 2025-09-10