clr function

Context Likelihood or Relatedness Network

Context Likelihood or Relatedness Network

A function that infers the interaction network using the CLR algorithm.

clr(mi)

Arguments

  • mi: matrix of the mutual information.

Returns

A square weighted adjacency matrix of the inferred network.

Details

CLR computes the score

sqrt(zi2+zj2)sqrt(zi2+zj2) sqrt(z_i^2 + z_j^2)sqrt(zi^2 + zj^2)

for each pair of variables i,ji, j, where

zi=max(0,(I(Xi;Xj)mean(Xi))/sd(Xi)) z_i = max(0, ( I(X_i;X_j)-mean(X_i) ) / sd(X_i))%zi = max(0, ( I(Xi;Xj)-mean(Xi) ) / sd(Xi))

and mean(Xi)mean(Xi) and sd(Xi)sd(Xi) are the mean and the standard deviation of the mutual information values I(Xi;Xk)I(Xi;Xk) for all k=1,,nk=1,\ldots,n.

By default, the function uses all the available cores. You can set the actual number of threads used to N by exporting the environment variable OMP_NUM_THREADS=N.

References

Jeremiah J. Faith, Boris Hayete, Joshua T. Thaden, Ilaria Mogno, Jamey Wierzbowski, Guillaume Cottarel, Simon Kasif, James J. Collins, and Timothy S. Gardner. Large-scale mapping and validation of escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biology, 2007.

See Also

aracne.a

aracne.m

mrnet

Examples

mat <- matrix(rnorm(1000), nrow=10) mi <- knnmi.all(mat) grn <- clr(mi)
  • Maintainer: Gabriele Sales
  • License: AGPL-3
  • Last published: 2024-10-21