frauddetector function

Amazon Fraud Detector

Amazon Fraud Detector

This is the Amazon Fraud Detector API Reference. This guide is for developers who need detailed information about Amazon Fraud Detector API actions, data types, and errors. For more information about Amazon Fraud Detector features, see the Amazon Fraud Detector User Guide.

We provide the Query API as well as AWS software development kits (SDK) for Amazon Fraud Detector in Java and Python programming languages.

The Amazon Fraud Detector Query API provides HTTPS requests that use the HTTP verb GET or POST and a Query parameter Action. AWS SDK provides libraries, sample code, tutorials, and other resources for software developers who prefer to build applications using language-specific APIs instead of submitting a request over HTTP or HTTPS. These libraries provide basic functions that automatically take care of tasks such as cryptographically signing your requests, retrying requests, and handling error responses, so that it is easier for you to get started. For more information about the AWS SDKs, go to Tools to build on AWS page, scroll down to the SDK section, and choose plus (+) sign to expand the section.

frauddetector( config = list(), credentials = list(), endpoint = NULL, region = NULL )

Arguments

  • config: Optional configuration of credentials, endpoint, and/or region.

    • credentials :

      • creds :

        • access_key_id : AWS access key ID
        • secret_access_key : AWS secret access key
        • session_token : AWS temporary session token
      • profile : The name of a profile to use. If not given, then the default profile is used.

      • anonymous : Set anonymous credentials.

    • endpoint : The complete URL to use for the constructed client.

    • region : The AWS Region used in instantiating the client.

    • close_connection : Immediately close all HTTP connections.

    • timeout : The time in seconds till a timeout exception is thrown when attempting to make a connection. The default is 60 seconds.

    • s3_force_path_style : Set this to true to force the request to use path-style addressing, i.e. http://s3.amazonaws.com/BUCKET/KEY.

    • sts_regional_endpoint : Set sts regional endpoint resolver to regional or legacy https://docs.aws.amazon.com/sdkref/latest/guide/feature-sts-regionalized-endpoints.html

  • credentials: Optional credentials shorthand for the config parameter

    • creds :

      • access_key_id : AWS access key ID
      • secret_access_key : AWS secret access key
      • session_token : AWS temporary session token
    • profile : The name of a profile to use. If not given, then the default profile is used.

    • anonymous : Set anonymous credentials.

  • endpoint: Optional shorthand for complete URL to use for the constructed client.

  • region: Optional shorthand for AWS Region used in instantiating the client.

Returns

A client for the service. You can call the service's operations using syntax like svc$operation(...), where svc is the name you've assigned to the client. The available operations are listed in the Operations section.

Service syntax

svc <- frauddetector(
  config = list(
    credentials = list(
 creds = list(
   access_key_id = "string",
   secret_access_key = "string",
   session_token = "string"
 ),
 profile = "string",
 anonymous = "logical"
    ),
    endpoint = "string",
    region = "string",
    close_connection = "logical",
    timeout = "numeric",
    s3_force_path_style = "logical",
    sts_regional_endpoint = "string"
  ),
  credentials = list(
    creds = list(
 access_key_id = "string",
 secret_access_key = "string",
 session_token = "string"
    ),
    profile = "string",
    anonymous = "logical"
  ),
  endpoint = "string",
  region = "string"
)

Operations

batch_create_variableCreates a batch of variables
batch_get_variableGets a batch of variables
cancel_batch_import_jobCancels an in-progress batch import job
cancel_batch_prediction_jobCancels the specified batch prediction job
create_batch_import_jobCreates a batch import job
create_batch_prediction_jobCreates a batch prediction job
create_detector_versionCreates a detector version
create_listCreates a list
create_modelCreates a model using the specified model type
create_model_versionCreates a version of the model using the specified model type and model id
create_ruleCreates a rule for use with the specified detector
create_variableCreates a variable
delete_batch_import_jobDeletes the specified batch import job ID record
delete_batch_prediction_jobDeletes a batch prediction job
delete_detectorDeletes the detector
delete_detector_versionDeletes the detector version
delete_entity_typeDeletes an entity type
delete_eventDeletes the specified event
delete_events_by_event_typeDeletes all events of a particular event type
delete_event_typeDeletes an event type
delete_external_modelRemoves a SageMaker model from Amazon Fraud Detector
delete_labelDeletes a label
delete_listDeletes the list, provided it is not used in a rule
delete_modelDeletes a model
delete_model_versionDeletes a model version
delete_outcomeDeletes an outcome
delete_ruleDeletes the rule
delete_variableDeletes a variable
describe_detectorGets all versions for a specified detector
describe_model_versionsGets all of the model versions for the specified model type or for the specified model type and model ID
get_batch_import_jobsGets all batch import jobs or a specific job of the specified ID
get_batch_prediction_jobsGets all batch prediction jobs or a specific job if you specify a job ID
get_delete_events_by_event_type_statusRetrieves the status of a DeleteEventsByEventType action
get_detectorsGets all detectors or a single detector if a detectorId is specified
get_detector_versionGets a particular detector version
get_entity_typesGets all entity types or a specific entity type if a name is specified
get_eventRetrieves details of events stored with Amazon Fraud Detector
get_event_predictionEvaluates an event against a detector version
get_event_prediction_metadataGets details of the past fraud predictions for the specified event ID, event type, detector ID, and detector version ID that was generated in the specified time period
get_event_typesGets all event types or a specific event type if name is provided
get_external_modelsGets the details for one or more Amazon SageMaker models that have been imported into the service
get_kms_encryption_keyGets the encryption key if a KMS key has been specified to be used to encrypt content in Amazon Fraud Detector
get_labelsGets all labels or a specific label if name is provided
get_list_elementsGets all the elements in the specified list
get_lists_metadataGets the metadata of either all the lists under the account or the specified list
get_modelsGets one or more models
get_model_versionGets the details of the specified model version
get_outcomesGets one or more outcomes
get_rulesGet all rules for a detector (paginated) if ruleId and ruleVersion are not specified
get_variablesGets all of the variables or the specific variable
list_event_predictionsGets a list of past predictions
list_tags_for_resourceLists all tags associated with the resource
put_detectorCreates or updates a detector
put_entity_typeCreates or updates an entity type
put_event_typeCreates or updates an event type
put_external_modelCreates or updates an Amazon SageMaker model endpoint
put_kms_encryption_keySpecifies the KMS key to be used to encrypt content in Amazon Fraud Detector
put_labelCreates or updates label
put_outcomeCreates or updates an outcome
send_eventStores events in Amazon Fraud Detector without generating fraud predictions for those events
tag_resourceAssigns tags to a resource
untag_resourceRemoves tags from a resource
update_detector_versionUpdates a detector version
update_detector_version_metadataUpdates the detector version's description
update_detector_version_statusUpdates the detector version’s status
update_event_labelUpdates the specified event with a new label
update_listUpdates a list
update_modelUpdates model description
update_model_versionUpdates a model version
update_model_version_statusUpdates the status of a model version
update_rule_metadataUpdates a rule's metadata
update_rule_versionUpdates a rule version resulting in a new rule version
update_variableUpdates a variable

Examples

## Not run: svc <- frauddetector() svc$batch_create_variable( Foo = 123 ) ## End(Not run)
  • Maintainer: Dyfan Jones
  • License: Apache License (>= 2.0)
  • Last published: 2025-03-17