machinelearning function

Amazon Machine Learning

Amazon Machine Learning

Definition of the public APIs exposed by Amazon Machine Learning

machinelearning( config = list(), credentials = list(), endpoint = NULL, region = NULL )

Arguments

  • config: Optional configuration of credentials, endpoint, and/or region.

    • credentials :

      • creds :

        • access_key_id : AWS access key ID
        • secret_access_key : AWS secret access key
        • session_token : AWS temporary session token
      • profile : The name of a profile to use. If not given, then the default profile is used.

      • anonymous : Set anonymous credentials.

    • endpoint : The complete URL to use for the constructed client.

    • region : The AWS Region used in instantiating the client.

    • close_connection : Immediately close all HTTP connections.

    • timeout : The time in seconds till a timeout exception is thrown when attempting to make a connection. The default is 60 seconds.

    • s3_force_path_style : Set this to true to force the request to use path-style addressing, i.e. http://s3.amazonaws.com/BUCKET/KEY.

    • sts_regional_endpoint : Set sts regional endpoint resolver to regional or legacy https://docs.aws.amazon.com/sdkref/latest/guide/feature-sts-regionalized-endpoints.html

  • credentials: Optional credentials shorthand for the config parameter

    • creds :

      • access_key_id : AWS access key ID
      • secret_access_key : AWS secret access key
      • session_token : AWS temporary session token
    • profile : The name of a profile to use. If not given, then the default profile is used.

    • anonymous : Set anonymous credentials.

  • endpoint: Optional shorthand for complete URL to use for the constructed client.

  • region: Optional shorthand for AWS Region used in instantiating the client.

Returns

A client for the service. You can call the service's operations using syntax like svc$operation(...), where svc is the name you've assigned to the client. The available operations are listed in the Operations section.

Service syntax

svc <- machinelearning(
  config = list(
    credentials = list(
 creds = list(
   access_key_id = "string",
   secret_access_key = "string",
   session_token = "string"
 ),
 profile = "string",
 anonymous = "logical"
    ),
    endpoint = "string",
    region = "string",
    close_connection = "logical",
    timeout = "numeric",
    s3_force_path_style = "logical",
    sts_regional_endpoint = "string"
  ),
  credentials = list(
    creds = list(
 access_key_id = "string",
 secret_access_key = "string",
 session_token = "string"
    ),
    profile = "string",
    anonymous = "logical"
  ),
  endpoint = "string",
  region = "string"
)

Operations

add_tagsAdds one or more tags to an object, up to a limit of 10
create_batch_predictionGenerates predictions for a group of observations
create_data_source_from_rdsCreates a DataSource object from an Amazon Relational Database Service (Amazon RDS)
create_data_source_from_redshiftCreates a DataSource from a database hosted on an Amazon Redshift cluster
create_data_source_from_s3Creates a DataSource object
create_evaluationCreates a new Evaluation of an MLModel
create_ml_modelCreates a new MLModel using the DataSource and the recipe as information sources
create_realtime_endpointCreates a real-time endpoint for the MLModel
delete_batch_predictionAssigns the DELETED status to a BatchPrediction, rendering it unusable
delete_data_sourceAssigns the DELETED status to a DataSource, rendering it unusable
delete_evaluationAssigns the DELETED status to an Evaluation, rendering it unusable
delete_ml_modelAssigns the DELETED status to an MLModel, rendering it unusable
delete_realtime_endpointDeletes a real time endpoint of an MLModel
delete_tagsDeletes the specified tags associated with an ML object
describe_batch_predictionsReturns a list of BatchPrediction operations that match the search criteria in the request
describe_data_sourcesReturns a list of DataSource that match the search criteria in the request
describe_evaluationsReturns a list of DescribeEvaluations that match the search criteria in the request
describe_ml_modelsReturns a list of MLModel that match the search criteria in the request
describe_tagsDescribes one or more of the tags for your Amazon ML object
get_batch_predictionReturns a BatchPrediction that includes detailed metadata, status, and data file information for a Batch Prediction request
get_data_sourceReturns a DataSource that includes metadata and data file information, as well as the current status of the DataSource
get_evaluationReturns an Evaluation that includes metadata as well as the current status of the Evaluation
get_ml_modelReturns an MLModel that includes detailed metadata, data source information, and the current status of the MLModel
predictGenerates a prediction for the observation using the specified ML Model
update_batch_predictionUpdates the BatchPredictionName of a BatchPrediction
update_data_sourceUpdates the DataSourceName of a DataSource
update_evaluationUpdates the EvaluationName of an Evaluation
update_ml_modelUpdates the MLModelName and the ScoreThreshold of an MLModel

Examples

## Not run: svc <- machinelearning() svc$add_tags( Foo = 123 ) ## End(Not run)
  • Maintainer: Dyfan Jones
  • License: Apache License (>= 2.0)
  • Last published: 2025-03-17