drm function

Estimation of dichotomous logistic Rasch model (Rasch, 1960)

Estimation of dichotomous logistic Rasch model (Rasch, 1960)

This function estimates the dichotomous Rasch model by Rasch (1960).

DRM(data, desmat, start, control) ## S3 method for class 'DRM' print(x, ...) ## S3 method for class 'DRM' summary(object, ...)

Arguments

  • data: Data matrix or data frame; rows represent observations (persons), columns represent the items.
  • desmat: Design matrix; if missing, the design matrix for a dichotomous Rasch model will be created automatically.
  • start: starting values for parameter estimation. If missing, a vector of 0 is used as starting values.
  • control: list with control parameters for the estimation process e.g. the convergence criterion. For details please see the help pages to the R built-in function optim
  • x: object of class DRM
  • ...: ...
  • object: object of class DRM

Returns

  • data: data matrix according to the input - design: design matrix either according to the input or according to the automatically generated matrix - logLikelihood: conditional log-likelihood

  • estpar: estimated basic item parameters

  • estpar_se: estimated standard errors for basic item parameters - itempar: estimated item parameters

  • itempar_se: estimated standard errors for item parameters

  • hessian: Hessian matrix - convergence: convergence of solution (see help files in optim) - fun_calls: number of function calls (see help files in optim)

Details

Parameters are estimated by CML.

Examples

#estimate Rasch model parameters data(reason) res_drm <- DRM(reason.test[,1:11]) summary(res_drm)

References

Fischer, G. H. (1974). Einfuehrung in die Theorie psychologischer Tests [Introduction to test theory]. Bern: Huber.

Rasch, G. (1960). Probabalistic models for some intelligence and attainment tests. Danmarks paedagogiske institut.

Author(s)

Christine Hohensinn