Estimation of dichotomous logistic Rasch model (Rasch, 1960)
Estimation of dichotomous logistic Rasch model (Rasch, 1960)
This function estimates the dichotomous Rasch model by Rasch (1960).
DRM(data, desmat, start, control)## S3 method for class 'DRM'print(x,...)## S3 method for class 'DRM'summary(object,...)
Arguments
data: Data matrix or data frame; rows represent observations (persons), columns represent the items.
desmat: Design matrix; if missing, the design matrix for a dichotomous Rasch model will be created automatically.
start: starting values for parameter estimation. If missing, a vector of 0 is used as starting values.
control: list with control parameters for the estimation process e.g. the convergence criterion. For details please see the help pages to the R built-in function optim
x: object of class DRM
...: ...
object: object of class DRM
Returns
data: data matrix according to the input - design: design matrix either according to the input or according to the automatically generated matrix - logLikelihood: conditional log-likelihood
estpar: estimated basic item parameters
estpar_se: estimated standard errors for basic item parameters - itempar: estimated item parameters
itempar_se: estimated standard errors for item parameters
hessian: Hessian matrix - convergence: convergence of solution (see help files in optim) - fun_calls: number of function calls (see help files in optim)
Details
Parameters are estimated by CML.
Examples
#estimate Rasch model parametersdata(reason)res_drm <- DRM(reason.test[,1:11])summary(res_drm)
References
Fischer, G. H. (1974). Einfuehrung in die Theorie psychologischer Tests [Introduction to test theory]. Bern: Huber.
Rasch, G. (1960). Probabalistic models for some intelligence and attainment tests. Danmarks paedagogiske institut.