SMPLSplit_est function

Estimation of sub-sampled data

Estimation of sub-sampled data

A function for estimating the subsampled data.

latin1

SMPLSplit_est(data,dep,indep,th,plot,h=1,nonpar=2)

Arguments

  • data: the data in either data.frame or matrix.
  • dep: the name of dependent variable.
  • indep: the name(s) of independent variable(s).
  • th: the name of threshold variable.
  • plot: =1, plot; =0, do not plot.
  • h: h=1, heteroskedasticity-consistent covariance; h=0, homoskedastic case.
  • nonpar: Indicator for non-parametric method used to estimate nuisance scale in the presence of heteroskedasticity (only relevant if h=1).Set nonpar=1 to estimate regressions using a quadratic.Set nonpar=2 to estimate regressions using an Epanechnikov kernel with automatic bandwidth.

Returns

  • threshold: values of threshold estimates.

  • est0: coefficient estimates of global data.

  • est.low: coefficient estimates of low regime.

  • est.high: coefficient estimates of high regime.

  • est0.info: additional information of global data.

  • est.joint.info: additional information of joint threshods.

  • est.low.info: additional information of est.low.

  • est.high.info: additional information of est.high.

Details

This code estimates the parameters of sub-sampled data. It generalizes the simple code of Dr. Hansen, allowing White Corrected Heteroskedastic Errors.

Note

Original code offered by Dr. B. E.Hansen (http://www.ssc.wisc.edu/~bhansen/).

References

Hanse B. E. (2000) Sample Splitting and Threshold Estimation. Econometrica, 68, 575-603.

Examples

## Not run, becasue of bootstrap replicaiton takes time. Users may unmark # and run. data("dur_john") rep <- 500 trim_per <- 0.15 dep <- "gdpGrowth" indep <- colnames(dur_john)[c(2,3,4,5)] SMPLSplit_est(data=dur_john,dep,indep,th="GDP60",plot=0,h=1,nonpar=2)
  • Maintainer: Ho Tsung-wu
  • License: GPL (>= 2)
  • Last published: 2024-08-18

Useful links